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Physics-Based Stochastic Retrievals:
A New Approach to Complex Data

Nature Models Look-up
None (Non-unique)
Additive jointly Gaussian Linear regression L. regression Bayes
Simple non-linear
Tailored non-linear AIRS Cloud Clear Precipitation

Staelin 2

Developed for IR Cloud Clearing and AMSU Precipitation
Continuing development under PMM, IPO, and AIRS programs
Tailored set of concatenated linear and non-linear multivariate operators
Use all available physical and statistical information

Statistics Physics

Matrix Multiply

Neural Net

Polynomial
Matrix Multiply Retrieval

Illustrative physics-tailored sequence of operators

Data



Stochastic AIRS Cloud Clearing, Retrievals
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Block Diagram of SC Algorithm
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Observational results and implications
- Global  and Arctic Precipitation
- Comparisons and Validation



Surface Precipitation Rate Jan. 23, 2006
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Spatial resolution is 15 km near nadir.   Light pink is snow or sea ice
Dark pink is high elevation; green is too cold (TB 53.6 GHz < 242K)
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Surface Precipitation Rate July 27, 2006
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Illustrative Surface Precipitation Rates

July 27, 2006 July 27, 2006

January 23, 2006 January 23, 2006

Large 
spiral

Siberian 
rain

Snowfall

Austral 
Summer

Circles highlight precipitation across boundaries with little discontinuity. Transition 
across green area suggests there is room for improvement in cold areas.
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North Pole Precipitation July 20-21, 2006

AMSU-derived precipitation over North Pole sea ice (pink) – evolution over 24 hours
High surface elevation is problematic (dark pink)
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July 20, 2006

70N

80N

July 21, 2006
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North Pole Precipitation

Early 
season rain 
and snow 
(visibility 
begins 

~May 20)

First of 
two-day 

sequence 
illustrating 

rapid 
evolution 
of storm 
systems

Second 
day of 

sequence

Late 
season 
rain and 

snow 
(visibility 

ends 
~Sept. 20)
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Antarctic Ice, Canadian Snow vs. CloudSat

60S

30E November 5, 2007
3 hr before AMSU

Snowfall

Antarctic 
snowfall 
over the 
ice shelf

50N

December 15, 2006
69 min before AMSU

Snowfall

Snowfall 
over 

Canadian 
snow, with 
possible 

false 
detection

0.4   0.5                           1                              2                             4 mm/h

110W
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Peak radar altitude ≅ 12 km



North Atlantic Precipitation vs. CloudSat

60N

50N

10W

60N

70W

0W

50N

September 15, 2007
108 min before AMSU

January 5, 2007
90 min before AMSU

Bright 
band

Bright 
band

Snowfall

North 
Atlantic 

front 
north of 
Britain

January 
front 

crossing 
Labrador

0.4   0.5                           1                              2                             4 mm/h
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Peak radar altitude ≅ 12 km



North Pole Precipitation vs. CloudSat

82N

60N

60W

May 15, 2007
80 min before AMSU

July 5, 2007
24 min after AMSU

Snowfall

Snowfall

North Pole 
storm with 
possible 

false 
detection 

at end

North Pole storm 
extending to

~80N

0.4   0.5                           1                              2                             4 mm/h

180E
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Peak radar altitude ≅ 12 km



Comparisons: CLOUDSAT, AMSU/NOAA

110W

50N

40N

60S

10E
50S

70W

60N

10W
50N

70N

1) AMSU/MM5, 2)  AMSU/NOAA without exploiting O2 band (SMPPS May 2007) 

MM5       NOAA      MM5    NOAA        MM5       NOAA        MM5         NOAA

Day 125 2007
100E

70N
2.5 hr before AMSU

60N

SIBERIA (Pink is Snowfield)

Peak radar altitude is ~ 12 km
AMSU/NOAA AMSU/MM5

mm/h0.2               0.5             1               2               4              8             16       25           
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Comparisons with Global Rain Gauges

Annual accumulation (mm): Monthly Climatic Data for the World [NCDC/NESDIS/NOAA]

Annual 
accumulations 

(mm) for 345 cities 
that report all 12 

months.

114 of these (×’s) are 
within 55 km of the 

coast.  AMSU 
averaged ±0.4 degrees 
longitude and latitude 
every pass. Omitted 
were 195 sites with 
elevation changes 

> 500m in ±0.2 degrees, 
and 39 desert sites

< 300 mm/yr. 

2007 NOAA-16
AMSU retrievals (mm/yr)

AMSU bias for 
non-desert, 

non-mountain, 
non-coastal 
sites was ~7 

percent.
With coastal 

sites, ~21 
percent
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Comparisons of Precipitation Distributions
Normalized-area distribution of precipitation rate for 106 global storms:

(a) Comparisons with MM5 truth for high-latitude winter and low latitude summer.
(b) AMSU ocean summer, ocean winter, land summer, and land winter.

Precipitation rate (mm/h) Precipitation rate (mm/h)

AMSU may be biased low toward the a priori mean for convective precipitation by time and 
space offsets between surface rain and hydrometeors aloft; virga may bias low rates

Land
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Histograms for 1o Boxes, Equal-Log Bins, |lat| > 45o

Surface precipitation Rate
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Surface precipitation Rate
MSPPS Orbital Data (MSPPS_ORB), http://www.class.noaa.gov, May 2007. [ AE_Rain, May 17, 2007 http://nsdic.org/data/amsre/versions.html;
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RMS Retrieval Errors for |lat| > 45o

via MM5 Simulations, 15-km resolution
MM5 

(mm/h)
Land Sea Warm

Sea
Rain Snow Con-

vective
Strat-
iform

0.25-0.5 0.69 0.45 0.46 0.59 0.46 2.01 0.49
0.5-1 0.88 0.54 0.51 0.70 0.71 2.22 0.61
1-2 1.26 0.70 0.70 0.94 0.92 2.51 0.82
2-4 2.05 1.24 1.20 1.56 1.81 2.86 1.42
4-8 3.44 2.78 2.44 3.00 3.78 3.70 2.87
8-16 6.65 5.85 6.02 6.87 4.92 6.59 5.81
16-32 13.8 14.4 15.0 15.2 10.8 13.8 -
32-64 23.5 31.2 31.2 27.6 21.5 24.8 -

Poor (rms > upper bound U) Usable (rms < U) Good (rms < lower bound)

106 global storms ~1000-km square were simulated with 5-km cells using an
NCEP-initialized cloud-resolving MM5 model, a 2-stream version of TBSCAT, a
laminar atmospheric model, and fluffy spheres with frequency-dependent densities;
these simulations roughly agreed with simultaneous 15-km AMSU observations.
Snow-free and ice-free surfaces were assumed.
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AMSU 2006 Annual Precipitation (mm)

NOAA-16
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Annual Precipitation Probability
(>0.5 mm/h) based on AMSU 2006

Precipitation probability

NOAA-16
365 days

Ascending 
Node 
~4PM

90N

60N

30N

0

30S
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0.004        0.013       0.04          0.13          0.4          1
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AMSU Annual Precipitation:
Probability and Amount vs. Latitude
NOAA 16

2007
Precipitation
threshold is
0.5 mm/h at

15-km resolution

53.6 GHz > 248K 
implies rain.

Estimated peak 
vertical wind > 

0.45 m/s implies 
convection

13% 2470 mm
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MM5
(mm)

Rainwater Snow Graupel Cloud liquid Peak V. wind
Now NPP Now NPP Now NPP Now NPP Now NPP

0-0.125 0.06 0.06 0.03 0.03 0.06 0.05 0.08 0.07 0.08 0.07
0.125-0.25 0.16 0.11 0.06 0.06 0.19 0.16 0.09 0.09 0.08 0.07
0.25-0.5 0.28 0.18 0.08 0.08 0.32 0.29 0.14 0.14 0.16 0.14

0.5-1 0.45 0.34 0.11 0.10 0.55 0.53 0.27 0.25 0.35 0.33
1-2 0.87 0.62 0.18 0.18 1.00 0.89 0.64 0.53 0.66 0.64
2-4 1.34 1.29 0.39 0.38 1.68 1.56 1.16 0.93 1.05 1.03
4-8 2.44 2.11 0.62 0.64 2.28 2.07 - - 2.32 1.75

8-16 4.46 3.18 - - 3.48 2.80 - - - -
16-32 9.39 8.19 - - 4.91 3.68 - - - -
32-64 - - - - - - - - - -

Water Path and Vertical Wind Retrievals
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Italics: rms errors exceed the maximum value bounding the octave. 
Boldface: rms errors less than the minimum for the octave.

Simulated rms errors ([MM5 – estimate] for106 global storms) for AMSU (Now) 
and ATMS (NPP) for hydrometeor water paths (MM) and vertical wind (m/s)



AMSU-Retrieved Vertical Wind (m/s) 
September 25, 2008
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0.6

0

255K

230K

70 
km3

/day

0

2002             2003            2004             2005            2006             2007

Fractional open ocean north of 70N

Daily precipitation north of 70N (km3)

Average 53.6-GHz TB north of 70N

Surussavadee and Staelin

∫ = 79               74                80                86                88                 97

∫ = 39 45                39                43               55                74

∫ = 875 875            876              875                    876              874

Climate inside 70N:  NOAA‐16 precipitation 
(AMSU, km3/day)  vs. fraction of open sea

24Caution: preliminary results subject to calibration and diurnal corrections
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Algorithm description
– physics and math



Millimeter-wave Precipitation Physics
AMSU senses 20 frequency bands:

“Windows”: 23.8,  31.4,  50,  89  and  150 GHz
“Opaque”: O2: 52.8-55.6 GHz ⇒ T(h), and H2O:183-GHz ⇒ RH(h)

Precipitation rate is correlated with [vertical wind] times [absolute humidity H]

Scattering differences between 50 and 183 GHz reveal drop size spectrum
Hydrometeor size spectrum reveals vertical wind velocities

TB 183 GHz < TB min (RH = 100) indicates ice content and therefore vertical wind

Surface-blind opaque channels “altitude slice”; cell-top altitude suggests wind

50-GHz spectrum yields surface reflectivity if surface spectral shape is known

Known reflective surfaces (e.g. ocean) permit opacity and RR measurements

Precipitation has several independent mm-wave signatures

26Staelin and Surussavadee        



Inputs and Training for Step 3 of the Precipitation Rate Algorithm

**

Precipitation Algorithm Architecture

Case PCA inputs PCA training NN Inputs NN  training
A Land A4-8 Land; 122 orbits PC1, B3-4 106 MM5, land
B Sea |lat|<45

53.6 GHz ≥ 248K
A1-8, B1-5 Ice-free sea

122 AMSU orbits
PC2-5 106 MM5

ice-free sea
C All sea pixels

that are not B
A4-8 Sea 53.6 < 248K

122 AMSU orbits
PC1-2, B3-4 106 MM5, sea

53.6 GHz < 248K
D All sea A4-8 Same as C Same as C 106 MM5, sea
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Surface 
roughness 

and/or 
humidity

Angle effect

Precipitation

Ocean Principal Components
NOAA-16 July 26, 2002

PC#1

PC#2

PC#6

Gradient signal, 
sea surface 
temperature

Precipitation 
signatures 

for PC’s 1, 6 
are lost in 

the spurious 
responses

C. Surussavadee and D. H. Staelin, Global millimeter-wave
precipitation retrievals trained with a cloud-resolving
numerical weather prediction model, Part I: retrieval design”,
Trans. Geosci. Remote Sensing, 46 (1), pp99-108 (2008)
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Surface sensitive Precip. sensitive Surface sensitive Surface sensitive

Land Principal Components

Principal 
Components 
a, c, and d 
are land-
sensitive, 
while b is 

more 
sensitive to 
precipitation 
and is used 
by the neural 

network 
estimate.
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Typhoon: 183-GHz Perturbations (oK)
“Altitude slicing” of convective cell tops (opaque channels see only high cell tops)        

The 2-km scale height of humidity yields sharp altitude information

30

183±7 GHz   
highlights 

precipitation

183±1 GHz     
highlights 
strongest 

convection

Staelin and Chen        
150                       200                 250K 180          200          220         240K



-0.5K      -0.4         -0.3         -0.2        -0.1            0-2K           -1.5              -1             -0.5               0

-5K         -4           -3           -2            -1            0 0.4  0.5                  1                    2                    4 mm/h

Arctic 53-GHz Band Perturbations (oK)

53.6 GHz

52.8 GHz

54.4 GHz

Retrieval

Low altitude cell

High altitude cells
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“Altitude slicing” of convective cell tops (opaque channels see only high cell tops)



AMSU vs. NCEP/MM5/TBSCAT/F(λ)
Left: AMSU-B 150-GHz 
brightness (K) over China, 
June 22, 2003 [1]
Right: ~5-hr 150-GHz 
brightness forecast using 
MM5/Goddard explicit 
cloud model initialized with 
1o NCEP fields

Left: ~5-hr 150-GHz 
brightness forecast 
using MM5/Reisner 2 
explicit cloud model
Right: ~5-hr 150-GHz 
brightness forecast 
using MM5/Schultz 
explicit cloud model

Left: AMSU-B 183±7-GHz 
brightness (K) over Europe, 
January 2, 2003
Right: ~5-hr 183±7-GHz 
brightness forecast using 
MM5/Goddard/  TBSCAT 

122 global storms of 250 
that best matched AMSU 
observations were used to 
train the algorithms.  
AMSU TB histograms 
matched MM5 simulations 
well.

89 GHz
50 GHz

150 GHz

183 GHz ± 1
± 3

± 7
230K
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AMSU
150 GHz Goddard

Reisner 2 Schultz

AMSU
183±7 GHz Goddard
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Potential for ATMS
- NPP and NPOESS



ATMS Configuration
23.8 GHz H2O 10 cm
31.4 H2O 50 cm

88.2 GHz H2O 15 cm

164-7 GHz H2O 18 mm
183.31±7 H2O 18 mm
183.31±4.5 H2O 4.5 mm
183.31±3 H2O 2.5 mm
183.31±1.8 H2O 1.2 mm
183.31±1 H2O 0.5 mm

Motor

33 km

15 km

33 km

70 km

CH. 17

Oxygen

CH. 16

CH. 2

CH. 1

CH. 3-15

0 40 80 120 160 20

18

20

22

GHz

H2O

50.3 GHz window, emissivity
51.76 window
52.8 T(h)   0-3 km
53.6±0.115 4 km  ~700 mb
54.4 9 km  ~400 mb
54.94 11 km~250 mb
55.5 13 km~180 mb
57.29 17 km ~90 mb
57.29±0.217 19 km ~50 mb
57.29±0.322±0.048 ~25 mb
57.29±0.322±0.022 ~10 mb
57.29±0.322±0.010   ~6 mb
57.29±0.322±0.004   ~3 mb

0.1

1.0

10

100

Zenith Opacity (dB)
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Sharpened 30-km res.

Sharpened pattern260 oK

220

180 

30 km

Blurred 30-km 
resolution with noise

22.1 km

Original pattern

Requires Nyquist sampling
G’(θ) = FFT {W(fθ)}

To minimize MSE:

Noise increases with     
sharpening

12

2
A

N (f )
W(f ) 1

T (f )

−

θ
θ

θ

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

Original 183±7 GHz 5-km image

Image Sharpening
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ATMS Image Sharpening vs. MM5, AMSU
Typhoon     Front 1/03  Florida 12/02  ITCZ 4/03   Siberia 7/02  Warm rain

MM5
“Truth”

ATMS
28-km 

sharpening

ATMS
24-km 

sharpening

ATMS
no 

sharpening

AMSU
sharpening 
impossible

555-km 
images

~”BEST”

Retrieved precipitation rates (mm/h)



MM5 
Range 
(mm/h)

AMSU ATMS ATMS with 24-km 
Sharpening

Land Sea All Land Sea All Land Sea All
0.5-1 1.04 1.24 1.15 0.76 0.91 0.85 1.17 1.35 1.27
1-2 1.62 1.45 1.52 1.33 1.26 1.29 1.66 1.40 1.50
2-4 2.24 2.13 2.17 2.22 1.81 1.99 2.74 2.42 2.56
4-8 3.82 4.46 4.18 3.60 3.16 3.36 4.40 4.20 4.29

8-16 6.52 8.01 7.28 6.48 6.52 6.50 6.75 7.67 7.21
16-32 11.6 11.4 11.5 10.8 10.9 10.8 11.3 12.1 11.7
32-64 19.3 22.2 21.1 17.0 19.7 18.6 21.6 22.5 22.1
>64 53.2 42.8 45.0 45.6 36.9 38.7 54.9 42.1 44.9

RMS Precipitation Retrieval Accuracies

Poor (rms > upper bound U)          Usable (rms < U)           Good (rms < lower bound)
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Potential for geostationary microwave
- Instrument concepts
- Image sharpening
- Predicted accuracies for alternatives
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Nodding
Subreflector

10 km400 km

10 km/sec

Geo-Microwave Sensor Concepts

ApSynthesis

GEM
2 meters

2 m

1.2 m
GOES

GEM

GeoSTAR

2 m
GEM’

Sketch by Ball Sketch by JPLSketch by MIT Lincoln Laboratory

Even a 2-m dish
Can be integrated on GOES

ΔTrms ≅ 0.5K (400 GHz, τ = 0.04s) 
Weight ~50 kg, 130 watts



Band 
(GHz)

A 
1.2

B 
2S

C
2

D
1.2S

E
1.2

F*
1200

G
600

H#

900
I*

600
J

300
K

300
52.8 25 50 50 25 50

118.75 97 38 58 62 97 25 50 50
166 69 28 42 44 69 25

183.31 63 26 38 42 63 25
380.2 14 18 22 30 *Dmax = 2.8 m for U array

#Dmax = 5.6 m for U array424.76 12 17 20 27

Spatial Resolution (km) at Nadir
Antenna Diameter, 

θB

Frequency Band (GHz)
53 118 166 183 380 425

1.2-m dish      1.3 λ/D 97 69 63 30 27
1.2-m dish (S)  0.95 λ/D 62 44 42 22 20

2-m dish           1.3λ/D 58 42 38 18 17
2-m dish (S)   0.95λ/D 38 28 26 14 12
300* rcvrs/band 0.5λ/D 50 50 50 50
600* rcvrs/band 0.5λ/D 25 25 25 25

Instrument Options Evaluated

Aperture synthesis systems must average ~40 times longer for same NEΔT                             
(say, x10 for bandwidth, x4 for 4-bands, ~x10 for area coverage, ÷10 for receiver noise)

* Assumes full disk coverage; one-quarter coverage halves the number of receivers
40Staelin and Surussavadee        



25km

Representative  Instrument Options
Surface precipitation rate images for four instrument options (mm/h)
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Summary and Conclusions
Physics-based stochastic retrievals offer advantages

- widely applicable, underused

Arctic AMSU precipitation retrievals extend to 1999
- unique climate data resource

AMSU global precipitation coverage is excellent for PMM
- ~twice daily per satellite,15-km resolution, ≤ 4 satellites

ATMS (NPP and NPOESS) will yield better precipitation retrievals

Geostationary microwave precipitation satellites are feasible
- 15-minute repeats could track convective-cell velocities.
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