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Challenges: Computer access and infrastructure



Introduction and
Experimental Design

Hong LI



Suppose we have a 6hr forecast (background) and new observations

The 3D-Var Analysis doesn’t know
about the errors of the day

Observations ~10°7 d.o.f. Background \-106 d.o.f.



With Ensemble Kalman Filtering we get perturbations pointing
to the directions of the “errors of the day”

Observations ~1057 d.o.f. @ Background ~106-8 d.o.f.

______________ —

Errors of the day: they lie

3D-Var Analysis: doesn’t know _
on a low-dim attractor

about the errors of the day



Ensemble Kalman Filtering is efficient because
matrix operations are performed in the low-dimensional
space of the ensemble perturbations

Ensemble Kalman Filter Analysis:
correction computed in the low dim
ensemble space

Observations ~10°7 d.o.f. - Background ~106-8 d.o.f.

______________ —

Errors of the day: they lie

3D-Var Analysis: doesn’t know _
on a low-dim attractor

about the errors of the day



Attributes of PSAS

» Until recently, the operational 3SDVAR scheme
used at NASA.

» User-friendly infrastructure

» Matrix computations are done in observation
space, which has a lower dimension than the
model state.



Local Ensemble Transform Kalman Filter
(LETKF, Hunt 2006)
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Local Ensemble Transform Kalman Filter

Perform Data Assimilation in local patch (3D-window)

» The state estimate is updated at the
central grid red dot

» All observations (purple diamonds)
within the local region are assimilated
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Local Ensemble Transform Kalman Filter
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Advantages of LETKF

» Matrix computations are done in
a very low-dimensional space: both accurate and
efficient, needs small ensemble.

» The analysis is computed independently at each
grid point, it is 100% parallel!

» Very fast! 5 minutes in a 20 PC
cluster with 40 ensemble members.

» Model independent, and also do not
require adjoint of the model.

» Can use full nonlinear observation operator, do
not require its adjoint or Jacobian.

> It knows about the “errors of the day” through P'.
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Errors of the Day
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PSAS cannot
account for the
errors of the day!!
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NASA finite-volume GCM

The NASA finite-volume GCM(fvGCM) Is a
guasi-operational weather forecasting model.

It has 72 zonal, 46 meridional grid-points and 55
levels.

It has highly accurate numerics but it Is very
different from other models (e.g., surface
pressure Is not a prognostic variable)



Data Assimilation on NASA fvGCM with
LETKF

Experimental Design:

Perfect model scenario. A “true” trajectory Is generated by integrating
the fvGCM model for several months.

Simulated rawinsonde observations: The observations are the truth plus
observational error as operational one. They are at rawinsonde
locations. We have two sets of observation types.

1) zonal wind(u), meridional wind (v), and geopotential height (H)

2) zonal wind(u), meridional wind (v), temperature (T), and surface
pressure(ps)



Real rawinsonde observation locations

Observation Locations Pressure Distribution
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Data Assimilation on NASA fvGCM with
LETKF

Experimental Design:

Perfect model scenario. A “true” trajectory Is generated by integrating
the fvGCM model for several months.

Simulated rawinsonde observations: The observations are the truth plus
observational error as operational one. They are at rawinsonde
locations. We have two sets of observation types.

1) zonal wind(u), meridional wind (v), and geopotential height (H)

2) zonal wind(u), meridional wind (v), temperature (T), and surface
pressure(ps)

Local patch size . Change with latitude based on the observation
coverage and physical distance between grid points.
Inflation scheme : Multiplicative inflation is used.



Results

Junjie Liu



First set of observation experiments

e Observed variable: U, V, H

e Updated dynamical variable (eta coordinate): U,
V, scaled potential T, and Ps

* Plotted variable: U, T (related with scaled
potential T, and pressure thickness (delp))



500hPa analysis RMS error (Global average)
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500hPa analysis RMS error (Northern Hemisphere average)

—
[ 2]
L

- RMS error (m/s)

-
T
L

:‘:‘:-
.

o
X

—
-}
L

—_
1

— PSAS
—LETKF

RMS=1.1

RMS=0.7

BN 11N 1B 21N ZBMN  TFEB FER 11FER 16FER TIFEB JEFEB
403

Time

Zonal Wind

0.9 — PSAS
— LETKF
0.8
X
—0.7
O
@ 0.6
7)) RMS=0.
=151
T
0.4
0.31
RMS=0.3
0.2 gﬁ%% 114N 16N 210N 2BlN  TFEB GFER 11FER 16FER DIFER JGFER
Time
Temperature



500hPa analysis RMS error (Southern Hemisphere average)
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Exploring large RMS analysis error on 06Z Feb12
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Exploring large RMS analysis error on 06Z Feb12

Background Error (color)

Analysis Increment (contour)
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LETKF captures the errors of
the day while PSAS cannot



Feb. average analysis RMS error at different levels (Global

average)
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Time mean of zonal mean analysis RMS error (averaged
over February) and dynamical state (contour)
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Zonal wind average analysis RMS error relative

Improvement
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500hPa Feb. average RMS forecast (Global average)
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LETKEF retains its advantage over PSAS
throughout the entire 5 day period



500hPa analysis RMS error (Global average)
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Analysis is further improved by assimilating operational data types T & Ps.

Updating pressure thickness further improves analysis.



Diagnostics

Elana Fertig



Structure of 6hr forecast ensemble spread and error variance

(averaged over February)
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Structure of ensemble spread and variance agree.

Ensemble Spread is

the average
distance between
the ensemble
members and the
mean forecast
state (contour)

Ensemble Variance is

the average
distance between
the ensemble
members and the
truth (color)



Ratio of ensemble spread to ensemble variance
(averaged over February)
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In general, the ensemble spread over estimates the forecast error.

This is more prominent over data sparse regions.



Vertical structure of ensemble spread and variance
(averaged over February)
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Ensemble spread is larger than the ensemble variance.




Online Variance Inflation

Variance inflation is a tunable parameter.
Can be estimated online as part of the data assimilation at low cost
by augmenting state vector to include inflation parameter
(Miyoshi, 2005)

,_tr(ddT)-tr(R)
tr(HP’H")

Observation of inflation factor: O° =

Forecast of inflation factor: é‘f =0

d is the observation innovation

Update inflation parameter using normal Kalman Filter Equations.



E-dimension: are there enough ensemble members?

The E-dimension represents the number
of uncertainty directions captured by the ensemble.
(Patil et al., 2001)

ﬂ,(’) IS the jth eigenvalue of the background error covariance
Minimum value 1: all the uncertainty is in one direction

Maximum value k: the total uncertainty is in at least as many directions as
ensemble members



Vertical Average of E-dimension (Feb. Average)
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E-dimension is well below the number of ensemble members (40) everywhere.
Therefore, 40 ensemble members seem to be sufficient to capture dynamics.

Smaller E-dimension over midlatitude oceans.



Conclusions

» For simulated rawinsonde observations, with operational
possible ensemble member(40), LETKF is much better than
NASA PSAS analyses after the spin-up time. The percentage
Improvement is up to 50% in Southern Hemisphere, most
areas is between 30% and 40%.

» LETKF captures the error of the day, while PSAS cannot.

» LETKEF is an efficient and parallel method of data assimilation.
5 minutes in a 20 PC cluster with 40 ensemble members.

» Analysis is improved by assimilating T and Ps instead of H.

» 40 ensemble members can capture the directions of
uncertainty.

» Ensemble spread and variance structures agree. These fields
Indicate the ability to further improve the LETKF analysis.



LETKF Implementation Challenges

Very limited computational resources
(shared cluster of 20 PC’s)

fvGCM has a very high top and strong
Instabllities at the top

Must tune parameters of scheme

Adaptation of existing forward operators to our
scheme



Future Plans

Eugenia Kalnay



Plans for this AIRS project

1) Real rawinsonde observations: u, v, T, d and SLP. We are starting
now.
2) Add AIRS retrievals: T, q with high density coverage
3) Rawinsondes plus clear AIRS radiances
(Compare with L. Strow forward model?)
4) AIRS data impact:
* Estimate the impact of AIRS.
* Compare clear radiances with retrievals (less accurate but more

coverage)

Funded by NASA/AIRS Project.



Miyoshi and Yamane (2006): LETKF at
the Japan Earth Simulator, T159/L48
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Figure 1. Time series of the analysis errors of LETKF for 30
days with 10 (black long-short-dashed line), 20 (red broken
line), 40 (green dashed line), and 80 (blue solid line)
ensemble members. The errors are measured by the RMSE of
the surface pressure.
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Figure 2. Analysis errors in the total energy norm at one-step
analyses of LETKF with changing the ensemble size. Solid
and dashed lines show the analyses at the first-step and 10
days later from the first-step, respectively.

With 80 ensemble members and 80 processors it takes only 4 minutes



Whitaker and Hamill (2005)
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Verifying the EnKF and 4D-Var against radiosonde data
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Final Comments

1) LETKF' is fast, parallel and mature

2) It is ready for testing in an operational testbed

3) It produces optimal initial perturbations for ensemble forecasting
4) It has a few tuning parameters (inflation, local patch size)

5) 4DLETKF assimilates satellite obs at their right time, like 4D-Var

6) It can be combined with Purser et al ideas for flow dependent 3D-
Var in the selection of data, which is now isotropic in LETKF
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