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Outline

 The joy of ensemble covariances
— Using ensemble DA as a tool to better understand the system

 Why mis-positioned features are a problem
 Error models to the rescue

o A two-step approach (position, then amplitude)
to ensemble data assimilation

 Many examples showing this is a good thing
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Surface Pressure & Temperature
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Covariance of Surface Low with Surface Pressure & Wind

Covariance of Surface Low with 500 hPa Height & Wind

max vector = 3.3 mis

Hakim
and
Torn

max vector = 1.7 m/is

Covariance of Surface Low with Tropopause § & Wind

max vector = 4.2 mfs
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. ___________________________________________________
Ensembles make PV inversion fun and easy!

PV,

— a a -1
rtel AX — X = A pVErtel
* Approach defined by Hakim and Torn
o Suffers from multicollinearity and overfitting (k << n)

 Significant improvements are realized by performing

the regression in CCA space (Gombos)

Full PV Field (300mb) Time Mean PV Field Time 'V'ii;‘ Eelréurbation
e
i Note, no worries about balance assumptions or boundary conditions
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Physical Mechanism: Trough-Ridge Coupling

Two Ensemble Members of the 300 Leading EOF of 300 mb Height
mb Height Field Field (77.2% of Variance)




Limitations of ECCR PV inversion

* Null spaces
— Ensemble size, CCA truncation

e Sampling and model error
 Violation of the linearity assumption

;"' : Vo)
\\ \
| ‘ \

!

|||"' Desired perturbation

CHUSETTS IMNSTITUTE OF TECHMOLOGY



-
Preliminary PV-Rain Inversion In

Ime Results

6 Hour Forecast Ensemble 12 Hour Nonconvective Nonconvective
Mean 400 mb PV (PVU) Precipitation Forecast (mm) Precipitation (mm)
Attributable to the 400 mb
PV
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Outline

 The joy of ensemble covariances
— Using ensemble DA as a tool to better understand the system

* Why mis-positioned features are a problem
 Error models to the rescue

o A two-step approach (position, then amplitude)
to ensemble data assimilation

 Many examples showing this is a good thing
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-
Gaussian position errors can result

IN non-Gaussian amplitude errors

States

Total errors

Initial ensemble, its mean, and the expected truth state

N
|

Ensemble members
- Ensemble mean
= = Truth state

Ensemble of total errors and its mean
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-15 -10 -5 0 5 10 15
i=1

20



Initial ensemble, its mean, truth, and observations
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Error Models

e Total errors defined as
g =x —x/

 Many possible error models
Xf:Xf(Si) €,(s,)

Additive

Multiplicative

Displacement

Mixed
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Example: Korteweg de-Vries

 Mixed displacement/additive error model

X' =x'(s; +¢&p) +8,(s;)

 For coherent feature, use a KdV soliton

— System dynamics: u, +uu_+u_ =0
1/2

2

(s — At)j

— Soliton solution:  u,(s,#) = 3Asech2[
— “Truth” Is a soliton



Initial ensemble, its mean, truth, and observations
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A two-step approach

* Mixed displacement/additive error model

x' =x’ (s, +&p) +€,(s;)

* First assimilate for displacement

x’ =x/ (s, téep)

 Then assimilate for amplitude

x' =x’(s.)He,(s.)
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12 assimilations later...ensemble Kalman filter analysis ensemble
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Truth and Station Observations
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Traditional EnKF Ensemble Mean
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Initial Ensemble Mean with Initial Feature Positions Initial Ensemble Mean with Analyzed Feature Positions
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Two—-Step Analysis Ensemble Mean
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Conclusions

 Ensemble data assimilation is neat
— covariance for DA
— covariance for understanding
— covariance for predictability

 Non-Gaussianity is bad (or at least a problem)

e (Gaussian position errors can lead to non-Gaussian
amplitude errors

« Alternative error models provide a useful framework for
understanding and ameliorating the impact of this type of
non-Gaussianity (use physics to inform error model)

* The two-step filter approach is effective

— primarily due to background covariance information
— requires an appropriate alignment scheme
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] Current vorticity field; black is current features, magenta target
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Current vorticity field plotted on Distorted grid




Aligned vorticity field after Bicubic Interpolation




“Stochastic” vs. “Deterministic”

filters
« Stochastic filter update o Deterministic filter update
x‘ =X +K(y’ -HX/) x‘ =X’ +K(y’ -Hx/)
x| =x7 +K(y’—Hx/ ) X =%] —K(Hx/)

P‘(t) =P’/ (t)-K@©)H (1)P’ (¢)

1 ; 4 a a T
= [A"O-M"OIA" () -M" ()]




Effects of non-Gaussianity
2 PDFs with identical means and variances
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The ensemble Kalman filter

Fori=1LN,
X/ (1) =F(x!(t—7))

P/ (1) =———[A () -M' OIA’ () -/ ()T

N -1

K(7) =P/ (0)H() [HE)P/ ()H(@)" +R@)]™
Pf

K=371R

x{ (1) =x7 (1) + K(@)[y? () —H(#)x! ()]

P(1) = — AT =M ][AT () - M 1




Ensemble Canonical Correlation Regression
(ECCR) Piecewise PV Inversion

 Project the state and PV ensemble anomalies onto their principal components
— Orthogonalizes the predictors, thereby eliminating multicollinearities

U,=PE U, =Y,F

 Truncate the principal components
— Further reduces the dimensionality, thereby minimizing overfitting and regression instability
— Determine the numbers of retained principal components via leave-one-out cross validation

 Project principal components onto bases in which projections are maximally correlated
— ldentifies the subspace in which predictors and predictands are maximally correlated

V=AU, W =BU,
AT _ SUPUP—lleUP BT _ SUYUY —1/2FU

Y

-1/2 -1/2 T
SVD(SUPUP SUPUYSUYUY ):EUPRCFUY

« Perform the regression in principal component CCA space

~

UHy W=R,V
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Augmented control vector sample covariance

N X
X:
o
XX - xo’
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XX =— ;
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Anomaly correlation of 500hPa height forecasts
Uppala et al, QJRMS, 2005
— Northern hemisphere —— Southern hemisphere
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Number of data used per day

6 B Total
] Conv + sat winds

Number of data used per day (millions)
w
|
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T
Fixing the data assimilation scheme (3d-Var)
and model (T159L60)
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Anomaly correlation of 500hPa height forecasts

Northern hemisphere Southern hemisphere
100 100
90 - m‘— D43 D+3| g
80 D+5t80
70- ’ I'II I 043 -70
60 - D+7| 60
D+7
50 ~50
40 -40
ERA-40 Operations
30 30

1980 1983 1986 1989 1992 1995 1998 2001 1980 1983 1986 1989 1992 1995 1998 2001

* Increasing observations without improving DA or model
has minimal impact (NH).

DA research needs to continue in order to utilize
Information available in our current (and future)
observing system (at least that's the story | tell my
students!)
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