
Princeton University

Development of 
Improved Forward Models for Assimilation of 

Snow Properties
into Land Surface Models

Eric Wood1

In conjunction with 
Rafal Wójcik1, Konstantinos M. Andreadis2, and 

Dennis P. Lettenmaier2

1Dept. of Civil and Environmental Engineering, Princeton University
2Dept. of Civil and Environmental Engineering, University of Washington

Univeristy of Washington



2 Princeton University

• Introduction
Importance of snow in (terrestrial) water budget studies
Satellite remote sensing of snow
Model-based physical approaches for prediction of snow properties

• Forward Emission Models for Snow Microwave Tb Retrival
DMTR, LSMEM, MEMLS

• Models Testing and Validation
NASA's CLPX  experiment
Sensitivity analyses, emission models vs CLPX and AMSR-E data

• Conclusions, Challenges, and Future Work         
Multi-sensor, multi-platform, multi-scale snow Tb assimilation -
twin experiment set up

Outline
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Introduction: importance of snow in water budget 
estimates

Snow cover extent (SCE) and water equivalent (SWE) 
are key factors in land-atmosphere feedbacks
As much as 90% of annual streamflow is snowmelt 
driven in the western US
Operational large-scale estimates of SCE and SWE 
would likely enhance the accuracy of NWP       
Improved NWP forecasts would also benefit flood 
forecasting and drought monitoring.
In situ observations are unable to  temporal and spatial 
variability of snow processes
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Introduction: satellite remote sensing of snow 

Snow Cover Extent (SCE)

– Visible wavelength sensors      
(GOES, AVHRR, MODIS etc)

– Cloud-free conditions 
required

– Lack of any information 
about water storage

Snow Water Equivalent 
(SWE)

– Passive microwave 
sensors   (SSM/I, AMSR-
E etc)

– Coarse spatial resolution
– Wet snow and 

metamorphism greatly 
affect signal
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Introduction: satellite remote sensing of snow

• Potential exits for improved retrieval of SWE at large-scales from space-
borne microwave radiometry.  Challenging because microwave Tb derives  
from surface, snow pack, vegetation, and atmosphere

• SWE retrieval theory:  

• dielectric constant of frozen water differs from liquid form

• snow crystals are effective scatterers of microwave radiation (snow 
density, grain size, stratigraphic structure and liquid water)

• deeper snow packs --> more snow crystals --> lower Tb

• Direct assimilation of Tb is a challenging problem - requires 
comprehensive land surface microwave emission model. 
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Introduction: physical models of snow properties

• Additional information about snow properties can be 
obtained by mass/energy balance snow 
models

• Uncertainty in forcing data and/or model 
parameters

• Nonlinearity and scale of modeled processes
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Introduction: physical models of snow properties

Example: SNTHERM (SNow THERmal Model)

Output : snow depth, profiles of snow temperature, water 
content, density, grain size
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• Can a forward model of surface microwave emission be 
developed that is capable of providing realistic brightness 
temperatures for snow covered areas, 

• Can the inputs for the forward model be provided by 
operational observations and/or physical snow model 
output, and

• Is the modeled/predicted Tb sufficiently accurate and useful 
for assimilation into operational NWP?

Research Questions
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Tb = F(Atmos↑↓, Tveg, Tsnow, Tsoil, εsnow, 
εsoil, scattering albedo, optical depth)

• Processes needed for cold seasons:

• frozen ground

• snow covered surface

• tall vegetation (snow or no snow).

Observed emission =
surface (snow/soil) emission + reflection
+ vegetation emission + attenuation
+ atmospheric emission + attenuation
+ water/ice emission + reflection

Vegetation
Emission

Surface 
Reflection

Atmospheric
Emission

Soil
Emission

Radiometer

Water      
Emission

Forward emission models for snow Tb retrival
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Forward emission models for snow Tb retrival
All Seasons LSMEM (Drusch et al., 2001, 2004; Gao et al., 2004)
• Calculates microwave emission from a surface partially covered with vegetation and/or snow
• Snow component based on the semi-empirical HUT emission model
• Treats snowpack as a single homogeneous layer
• Dielectric constants of ice and snow calculated from different optional models
• Inputs include snow depth, density, temperature, grain size and ground temperature

DMRT (Tsang et al, 2000)
• Calculates Tb from a densely packed medium
• A quasi-crystalline approximation is used to calculate absorption characteristics 

with particles allowed to form clusters
• The distorted Born approximation is used to calculate the scattering coefficients
• Inputs include snow depth, snow temperature, fractional volume and grain size

MEMLS (Metzler, 1998)
• Calculates Tb from a multi-layer snow medium
• The absorption coefficient is derived from snow density, frequency and temperature
• The scattering depens on snow density, frequency and correlation length
• Inputs include snow depth, temperature,density, ground temperature and correlation length
• So far successfully validated only for dry snow conditions
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Models Validation and Testing
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Models Validation and Testing

Validation with CLPX 
Observations

• Ground-Based Microwave 
Radiometer (GBMR)

• Dense Snow Pit measurements 
• 12-13 Dec 2002 & 19-24 Mar 

2003
• Snow on bare ground (no 

vegetation)
• Assume snow measurements 

representative of entire LSOS 
(100 x 100 m)
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• Microwave emission from full snow coverage at 55°

• AS-LSMEM was run for different grain sizes to capture observed stratigraphy

• Strong dependence of results with assumed grain size

Models Validation and Testing
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Models Validation and Testing
• Microwave emission from full snow coverage at 55°

• MEMLS was run for different correlation lengths to capture observed stratigraphy

• Strong dependence of results with assumed correlation length
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Models Validation and Testing
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Models Validation and Testing

Validation of SNTHERM at CLPX Snow Pits,  Feb-March 2003
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Models Validation and Testing

Validation of SNTHERM at CLPX Snow Pits,  Feb-March 2003
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Models Validation and Testing

• force AS-LSMEM, DRTM, MEMLS with outputs 
from  SNTHERM
• compare estimated Tb with GBMR and AMSR-E 
measurements at 18.7 and 36.7 (h/v) Ghz 

Can the inputs for a forward model be provided by physical snow model 
output to obtain realistic Tb estimates?

Assumptions: single snow layer, dry snow
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Models Validation and Testing
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Models Validation and Testing
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Conclusions, challenges and future work

• There is great potential is for estimating snow Tb by forward emission models

• Assimilating satellite Tb could improve snow estimates in land surface models 
at variety of spatio – temporal scales ---> improved water budget estimates

• Data assimilation offers the framework to:
- optimally combine forward emission models and remote sensing 

observations of snow Tb
- account for the limitations of both by error structure description

• Understanding of the error structure of forward emission models, sensors, 
etc, including how they vary in time and space

• Data assimilation of snow Tb observations 

• Improving forward emission models

Challenges and Future Work

Potentials
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Conclusions, challenges and future work

Twin experiment:  multi -model, multi-scale, multi sensor 
snow Tb data assimilation

• Generate “snow reality” with SNTHERM at multiple spatio-temporal scales

• Force an ensemble of forward emission models with SNTHERM output

• Compare the above estimates of Tb with multi-sensor measurements

• Derive observational operators by quantizing error structure
using flexible pdf estimators (copula models, mixture models)

• Assimilate multi-sensor measurements into Noah LSM and/or 
multiple land surface models

• Update snow characteristics, combine them (Bayesian model mixture)   
and compare with SNTHERM “snow reality”
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Conclusions, challenges and future work

Data assimilation
Initial State Initial State 
EnsembleEnsemble

Forcing DataForcing Data

Ensemble of Ensemble of 
Hydrologic Hydrologic 

ModelsModels
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<Propagation Step><Propagation Step>
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OutputOutput
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Conclusions, Challenges and Future Work
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Conclusions, challenges and future work

Data assimilation
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Conclusions, Challenges and Future Work

Simulated snow depth, before (prior) and after (EnKF)           
assimilation in the Stanley Basin (43.60 N, 114.67 W).
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The End

Thank you.
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