All-sky infrared radiances assimilation of selected humidity sensitive IASI channels at NCEP/EMC

Li Bi1, Andrew Collard2, Emily Liu3, James Jung4, John Derber5

1,2 NWS/NCEP/EMC/IMSG, 3 NWS/NCEP/EMC/SGI, 4 CIMSS/UW-Madison, 5 NWS/NCEP/EMC

May 19th, 2017

15th JCSDA Technical Review & Science Workshop on Satellite Data Assimilation
College Park, MD 17-19 May 2017
Outline

• IASI humidity channel selection in all-sky conditions
• Introduction of cloud effect parameter
• Different cloud cover schemes discussion
• Preliminary results
• Summary and future work
IASI humidity channel selection

IASI Spectral With WV CH Selection

Brightness Temperature [K]

Wave Number [cm⁻¹]
IASI humidity channel selection

<table>
<thead>
<tr>
<th>Channel number</th>
<th>Wave number (cm(^{-1}))</th>
<th>Channel index</th>
</tr>
</thead>
<tbody>
<tr>
<td>2889</td>
<td>1367</td>
<td>304</td>
</tr>
<tr>
<td>2958</td>
<td>1384.25</td>
<td>314</td>
</tr>
<tr>
<td>2993</td>
<td>1393</td>
<td>321</td>
</tr>
<tr>
<td>3002</td>
<td>1395.25</td>
<td>322</td>
</tr>
<tr>
<td>3049</td>
<td>1407</td>
<td>330</td>
</tr>
<tr>
<td>3105</td>
<td>1421</td>
<td>340</td>
</tr>
<tr>
<td>3110</td>
<td>1422.25</td>
<td>342</td>
</tr>
<tr>
<td>5381</td>
<td>1990</td>
<td>459</td>
</tr>
<tr>
<td>5399</td>
<td>1994.5</td>
<td>462</td>
</tr>
<tr>
<td>5480</td>
<td>2014.75</td>
<td>469</td>
</tr>
</tbody>
</table>
Prediction of O-B using the cloud effect parameter

(Geer et al, 2011; Okamato et al, 2014)

\[CA_i = \frac{(|OB_i - FG_{clr,i}| + |FG_i - FG_{clr,i}|)}{2} \]

\[FG_{clr} : \text{clear-sky FG, } i: \text{channel} \]

\[CA_i = \frac{(|C_O| + |C_M|)}{2} \]

O-B assuming overcast

O-B using model’s cloud fraction
Set up new obs error based on cloud effect

```plaintext
do i=1,nchanl
  cclr_ir(304)=0.0_r_kind
  cclr_ir(314)=0.0_r_kind
  cclr_ir(321)=0.0_r_kind
  cclr_ir(322)=0.0_r_kind
  cclr_ir(330)=0.0_r_kind
  cclr_ir(340)=0.0_r_kind
  cclr_ir(342)=0.0_r_kind
  cclr_ir(459)=0.0_r_kind
  cclr_ir(462)=0.0_r_kind
  cclr_ir(469)=0.0_r_kind
end do

do i=1,nchanl
  ccld_ir(304)=10.0_r_kind
  ccld_ir(314)=10.0_r_kind
  ccld_ir(321)=10.0_r_kind
  ccld_ir(322)=10.0_r_kind
  ccld_ir(330)=10.0_r_kind
  ccld_ir(340)=10.0_r_kind
  ccld_ir(342)=10.0_r_kind
  ccld_ir(459)=5.0_r_kind
  ccld_ir(462)=5.0_r_kind
  ccld_ir(469)=5.0_r_kind
end do

<table>
<thead>
<tr>
<th>sensor/instr/sat</th>
<th>chan</th>
<th>iuse</th>
<th>error</th>
<th>error_cld</th>
</tr>
</thead>
<tbody>
<tr>
<td>lasi616</td>
<td>2889</td>
<td>1</td>
<td>1.98</td>
<td>15.00</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
```
estimated observation error for low peak and high peak channels
Mixed channels: separate observation errors for clear sky channels and all sky channels.
O-B assuming overcast

O-B using model’s cloud fraction

PDFs obtained by including cloud effect and model’s cloud fraction are much closer to Gaussian distribution.
Check O-B with model cldfrac for other channels
Check O-B with model \text{cldfrac} for other channels
Analysis PDFs response well by including cloud effect and model’s cloud fraction
CRTM cloud cover option

Using Paul’s crtm_v2.3.0-alpha branch with cloud cover computation

• Offline cloud fraction computation vs. CRTM cloud cover computation
• Calculate the total cloud cover (TCC) using the four overlap schemes from the cloud fraction profile (Morcrette and Jakob, 2000)
• Apply computed TCC to calculate the all sky radiances:
 • Include all the points
 • In radiance space
 • Over the ocean

\[\text{Radallsky} = (1-TCC) \times \text{Radclear} + TCC \times \text{Radcloudy} \]
Weighted cloud fraction verification

- Cloud cover scheme is implemented in GSI code
- Total cloud cover calculated from CRTM RT solution is verified against offline GSI cloud fraction calculation
 - $\text{rt_solution}\%\text{total_cloud_cover} - \text{Offline_GSI_cloud_cover}$
Radallsky = \((1-TCC)\times Radclear + TCC\times Radcloudy\)

Example of weighted cloud fraction calculated from CRTM and O-B departure from average overlap
Radallsky = (1-TCC)\text{Radclear} + TCC\text{Radcloudy}

Example of weighted cloud fraction calculated from CRTM and O-B departure from maximum overlap
All the points over ocean

All the points over ocean with QC

➢ O-B GSI stats (no bias correction) for different overlap assumptions:

Avg: 0.3981826 **Max:** 0.5500953 **Ran:** 0.6193535 **MaxRan:** 0.5777849
Results from parallel experiment: 2015052500-2015072400
Results from parallel experiment: 2015052500-2015072400

North

TEMPERATURE

South

Tropics

North America

prlRct solid
prlRexp dotted
24-hr fcst
48-hr fcst

prlRct solid
prlRexp dotted
00z10Jun2015 - 00z24Jul2015
Results from parallel experiment: 2015052500-2015072400
Results from Global radiances monitoring package for Ch2889

Smaller O-B and O-A departure compared to control
MHS channel 3 unbiased corrected mean O-B/O-A for control and experiment

From IRctl

Mean Not Bias-Corrected Departure O-B channel 3

Mean Not Bias-Corrected Departure O-A channel 3
MHS channel 3 unbiased corrected mean O-B/O-A for control and experiment

From IRexp

Mean Not Bias-Corrected Departure O-B channel 3

Mean Not Bias-Corrected Departure O-A channel 3

All sky IASI experiment reduce MHS channel O-B/O-A bias
Summary and future work

• Assimilating IASI water vapor sensitive channels in all-sky condition show slight positive/neutral impact.

• Four CRTM cloud cover schemes were tested in this study and the average overlap scheme was selected.

• IASI All-sky radiances assimilation reduced the bias of other satellite instrument.

• Start a new parallel experiment using CRTM REL-2.3.0.

• Use International Satellite Cloud Climatology Project (ISCCP) data to verify cloud signal.

• Prepare for operational implementation.

• Apply the same methods to CrIS FSR.
Future work: Ongoing ASCAT-B winds assimilation

- Assimilating MetOp ASCAT-A winds project was supported by JCSDA during FY07-FY08.
- The current ASCAT-B winds assimilation efforts are being supported by NCEP/EMC.

2015052800 – 2015060800 All the points after QC
ASCAT Histogram by OBS SPD Range

ASCAT-A

ASCAT-B
References

