Development and Implementation of Dynamic Scripts to Execute Cycled GSI/WRF Forecasts

Bradley Zavodsky¹, Jayanthi Srikishen², Emily Berndt³, Xuanli Li⁴, & Leela Watson⁵

¹NASA Marshall Space Flight Center, Huntsville, AL ²Universities Space Research Association, Huntsville, AL ³NASA Postdoctoral Program MSFC, Huntsville, AL ⁴University of Alabama in Huntsville, ESSC, Huntsville, AL ⁵ENSCO, Inc., Cocoa Beach, FL

BACKGROUND

• The Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model and Gridpoint Statistical Interpolation (GSI) data assimilation (DA) are the operational systems that make up the North American Mesoscale (NAM) model and the NAM Data Assimilation System (NDAS) analysis used by National Weather Service forecasters.
• The Developmental Testbed Center (DTC) manages and distributes WRF and GSI, but it is up to individual researchers to link them together and write scripts to run the whole system; this effort can take considerable time for those not familiar with the code.
• Objective of this project is to develop and disseminate a set of dynamic scripts that mimic the unique cycling configuration of the operational NAM (Fig. 1) to enable researchers to develop new modeling and data assimilation techniques that can be easily transferred to operational settings.
• The current version of the SPoRT GSI/WRF Scripts (v3.0.1) is compatible with WRF v3.3 and GSI v3.0.

APPLICATIONS

• The SPoRT GSI/WRF Cycling Scripts have been used by a number of collaborators to learn how to easily run GSI and link with WRF.
• The following projects all are working in the operational NAM framework to demonstrate either a new dataset or assimilation technique.

1. TESTING GSI SOURCE CODE CHANGES (SEE B. ZAVODSKY POSTER)

• Adding new quality control procedure to increase the yield of satellite radiances assimilated into GSI by swapping cloud top pressure (CTP) from MODIS for CTP that is generated internally by GSI (see Fig. 3).

2. ASSIMILATING CHS OBSERVATIONS

• Retrieved profiles from the Cross-track Infrared Sounder (CrIS) represent the next generation of hyperspectral observations.
• Scripts are being used to investigate impact of these soundings on non-convective wind events.
• Initial results indicate impact of CrIS profiles on forecasts (see Fig. 4).

3. DUAL-POLAR RADAR ASSIMILATION (SEE X. LI PRESENTATION)

• Dual-polarimetric radar is a relatively new set of operational observations.
• Currently, only reflectivity and velocities are assimilated in DA systems but dual-pol adds a number of other variables that can aid in short-term, mesoscale NWP.
• Current work is with ground-based data to increase the yield for dual-pol radar from the upcoming NASA Global Precipitation Measurement Mission.

4. REAL-TIME FORECASTS TO SUPPORT LAUNCH OPERATIONS

• The NASA Applied Meteorology Unit is using the GSI/WRF scripts to run a real-time, high-resolution model over the Eastern Range (ER) and Wallops Island Flight Facility to support flight and launch operations.
• Larger scale models do not resolve important mesoscale features and scripts are configured to match local weather challenges.

CODE INFRASTRUCTURE

• Open source scripts written in Perl with included modules.
• Able to run either ARW or NMM with either NAM or GFS BCs.
• User configures WRF domain, run dates/times, and other options in runnamelist.sport.gsiwrf file and scripts generate proper namelist files for running WPS, GSI, and WRF based on NAM (see Fig. 2).
• Nested domains for the final forecast (tm00) can be configured; data assimilation is performed only on outermost domain.

runnamelist.sport.gsiwrf

• User configures specifics of run including WRF domain(s) and run dates/times.
• Reads into each Perl program to configure namelists for WPS, REAL, GSI, and WRF.

runWPS.pl

• Links static files needed to run WPS and WRF.
• Copies large-scale model files from modelData directory and preprocesses.
• Configures namelist.wps and namelist.input from templates using information passed from runnamelist.sport.gsiwrf and runs geogrid, ungrib, metgrid & real.

runGSI.pl

• Links obs from BUFRObs directory and satellite radiance files.
• Configures gsiparm.ani from template and runs GSI.
• Background, analysis, and diagnostic files are all archived for future investigation of observation and analysis impacts.

runWRF.pl

• Configures namelist.input from template and runs WRF.
• For pre-cycle, forecast file is saved in a separate directory that is then accessed for the next cycle.
• Final forecast files are compressed and archived.

runWPS.pl

• Links to a number of Perl programs to execute WPS/REAL/GEOSRC.EDM/ARW.

OPPORTUNITIES FOR COLLABORATION WITH JCSDA

• ftp://geo.nsstc.nasa.gov/SPoRT/modeling/GSIWRFScripts or scan the QR code below to obtain scripts.
• Would like to continue development of these scripts to more closely match hybrid GSI to further enable researchers to develop code within the operational environment.
• Contact Brad Zavodsky (brad.zavodsky@nasa.gov) for more information or if you have questions about the scripts and/or their use.

ACKNOWLEDGMENTS

• These scripts were developed as part of a proposal funded by Tsengdar Lee through the Joint Center for Satellite Data Assimilation (JCSDA) and Short-term Prediction Research and Transition (SPoRT) Center.
• Based off of cycling scripts originally written by Shih-Hung Chou (NASA/MSFC Ret.).

Figure 1. Schematic of NAM cycling system (DMengo, personal communication) employed by the SPoRT GSI/WRF Scripts.

Figure 2. 2-h reflectivity (dBZ) forecast valid 0600 UTC 2 September 2013 with (left) and without (right) assimilation of ground-based dual-pol data.

Figure 3. Comparison of CTP from current GSI technique (left) and MODIS CTP (right).

Figure 4. Potential vorticity differences between WRF forecasts with and without hyperspectral profile data to diagnose the impact of these new datasets on specific model forecasts.

Figure 5. 2-h reflectivity (dBZ) forecast valid 0600 UTC 2 September 2013 with (left) and without (right) assimilation of ground-based dual-pol data.

Figure 6. Simulated radar reflectivity (gray scale) and MSLP (contour, hPa) for a rain event over the ER initialized at 1800 UTC 2 September 2013.