Status on Cloudy Radiance Data Assimilation in NCEP GSI

1Min-Jeong Kim

2Fuzhong Weng, 3Emily Liu, 4Will McCarty,
3Yanqiu Zhu, 3John Derber, and 3Andrew Collard

1Cooperative Institute for the Research in Atmosphere (CIRA), Colorado State Univ.
2NOAA/NESDIS Center for Satellite Data and Application (STAR)
3NOAA/NWS National Centers for Environmental Prediction (NCEP)
4NASA/GSFC Global Modeling and Assimilation Office (GMAO)
Outline

1. Motivation
2. Progress made to date
3. Assessments from preliminary results
4. Current Issues
5. Summary
6. Future Work
Cloud or precipitation indicates that some dynamically important weather is occurring. Subsequent forecasts are often sensitive to initial conditions in regions with cloud and precipitation occurrence.
Motivation & Objective

Analysis increments from current operational GSI

We might be able to improve cloud analysis by assimilating cloudy radiance data.
• **Which Instruments?** AMSU-A cloudy radiance data are being tested. Microwave imagers such as AMSR-E and TMI will be tested afterwards.

• **Cloud type?** Cloudy radiance data in the region with non-precipitating clouds over the ocean are currently included in addition to the data already assimilated in the operational GSI system.

• **Global analysis or regional analysis?** Cloudy radiance data assimilation are being tested only for global GSI analysis for now. Similar methodologies will be tested in NCEP WRF NMM and HWRF cloud analyses in the future.
Quick View of the Progress to Date

<table>
<thead>
<tr>
<th></th>
<th>Operational GSI (Clear Sky radiance DA)</th>
<th>New GSI (All-sky radiance DA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Forward operator & First guess fields</td>
<td>Do not include cloud</td>
<td>Include clouds for Tb and jacobians</td>
</tr>
<tr>
<td>(2) AMSU-A radiance Observations</td>
<td>Clear sky over land and ocean</td>
<td>Clear sky over land and ocean + Cloudy sky over the ocean</td>
</tr>
<tr>
<td>(3) Observation error</td>
<td>Statistics based in clear sky conditions</td>
<td>Statistics based in clear and cloudy sky conditions</td>
</tr>
<tr>
<td>(4) Control variable</td>
<td>T, q, ozone profiles, sfc P, u, v Not including cloud water</td>
<td>T, q, ozone profiles, sfc P, u, v + Cloud water profile</td>
</tr>
<tr>
<td>(5) Background error covariance</td>
<td>T, q, ozone profiles, sfc P, u, v Using NMC method</td>
<td>T, q, ozone profiles, sfc P, u, v + cloud water Using NMC method</td>
</tr>
</tbody>
</table>
| (6) Quality control | • Screen out cloudy data
• Gross check:
\[
\frac{|T_{b_{obs}} - T_{b_{FG}}|}{\sigma_{clear \ sky}} > 3
\] | • Keep cloudy data unless cloud liquid water path > 0.5kg/m²
• Gross check:
\[
\frac{|T_{b_{obs}} - T_{b_{FG}}|}{\sigma_{all \ sky}} > 3
\] |
Progress (1) : Set-up Observation Operator

AMSU-A Observed Tb

CH 2 31.4 GHz

Much warmer than FG

First-Guess Tb

CH 2 31.4 GHz

Scattering signal in observations. ➔ Precipitation + ice clouds

CH 15 89.0 GHz

CH 15 89.0 GHz

JCSDA 9th Workshop on Satellite Data Assimilation, May 24-25, 2011, M-J. Kim
Progress (2) : Including Tb Sensitivity to CW

CRTM Computed Jacobians

Water Vapor

Liquid Cloud

Ice Cloud

JCSDA 9th Workshop on Satellite Data Assimilation, May 24-25, 2011, M-J. Kim
Progress (3): Understanding O-F behaviors in cloudy conditions

Non-Precipitating Cloudy Conditions

Obs Tbs with CLWP > 0.5kg/m² screened out
Progress (3): Understanding O-F behaviors in cloudy conditions

Histogram: Observed Tbs - First guess Tbs

Original GSI

- clear sky over the ocean

All-Sky GSI

- clear sky for all surface + nonprecipitating cloudy sky over the ocean

JCSDA 9th Workshop on Satellite Data Assimilation, May 24-25, 2011, M-J. Kim
Progress (4) : New Observation Errors

function of observed cloud or model cloud?

Method learned from Geer et al. (2010) @ ECMWF

Obs: Cloudy sky
Model: Clear

Obs: Clear sky
Model: Cloudy

Obs error function of Obs cloud

Large obs error (Small weight)

Small obs error (Large weight)

Obs error function of Model cloud

Dry model atmosphere

Small obs error (Large weight)

Large obs error (Small weight)

Moisten model atmosphere

JCSDA 9th Workshop on Satellite Data Assimilation, May 24-25, 2011, M-J. Kim
Progress (4) : New Observation Errors

Mean of Tb Departure

All statistics from data of 7 days
Progress (4) : New Observation Errors

Standard Deviation of Tb Departure

All statistics from data of 7 days

AMSU-A Channel 1

8K

AMSU-A Channel 2

13K

AMSU-A Channel 3

6.5K

AMSU-A Channel 15

9.5K
For clear and non-precipitating cloudy sky over the ocean

\[\text{CLWP} = 0.5 \times (\text{obs clwp} + \text{model clwp}) \]

\[A_i = \text{clear sky obs error for each channel(i)} \]

\[B_i = \text{cloudy sky obs error for each channel(i)} \]

If (CLWP < 0.05) then

\[\text{Obs}_\text{error}_i = A_i \]

else if (CLWP \geq 0.05 \text{ and } < 0.25) then

\[\text{Obs}_\text{error}_i = A_i + (\text{CLD}-0.05) \times (B_i - A_i)/(0.25-0.05) \]

else if (CLWP \geq 0.25 \text{ and } < 0.5) then

\[\text{Obs}_\text{error}_i = A_i + (\text{CLD}-0.25) \times (A_i - B_i)/(0.5-0.25) \]

else

\[\text{Obs}_\text{error}_i = B_i \]

endif
Progress (5): New Quality Control Methods

1. Screening cloud affected AMSU-A data
 Criteria: (1) scattering index (using ch1, 2, and 15 + ch6 Tb departure)
 (2) retrieved clwp + ch4 Tb departure
 ➔ New: Screening retrieved averaged CLWP > 0.5kg/m² over the ocean

2. Topography effect: for observations at Zsfc > 2km, observation errors get increased.

3. Too much sensitivity to sfc temperature/sfc emissivity: inflating observation error

4. Transmittance at the top of the model less than 1: inflating observation error

4. New gross check for all-sky (clear and cloudy) radiance data

\[\frac{|\Delta T_{b_{ich}}|}{\sigma_{ich}} > 3 \]

\(\sigma_{ich} \) : New observation error (i.e. function of averaged CLWP)
Progress (6): Adding Cloud Control Variable & Cloud Background Error Covariance for Radiance DA

- Cloud water mixing ratio at each layer is additional control variable
- Background error covariance for clouds are from NMC method.

Large standard deviations in the region of convections near tropics and midlatitude frontal systems

Not much horizontal correlation for cloud

Larger correlation in vertical than in horizontal

- **Daryl Kleist (EMC)** has set up for the current BK error covariance using NMC method.
- **Will McCarty (NASA/GMAO)** will improve BK error covariance for cloud related control variables.
Assessment: Cloud Analysis Increments

• Clouds have been actively assimilated.
• Cloud analysis fields got improved and closer to the observations (retrieved clouds).
Assessment: FG Tb departures vs. Analysis Tb departures

AMSU-A

Mean of Tb Difference

Standard Deviation of Tb Difference

Something going on with channel 15 ..
Assessment: MHS FG departures vs. Analysis departures

Mean of Tb differences

NOAA–18 MHS

NOAA–19 MHS

MHS Channel #

Δ Tb (K)

Mean of Tb differences

JCSDA 9th Workshop on Satellite Data Assimilation, May 24-25, 2011, M-J. Kim
Current Issue (1) : Bias Correction

AMSU-A O-F vs. O-A

clear sky + nonprecipitating cloudy sky over the ocean

O-A Tb departure distribution : titled toward negative.
Current Issue (2): Retrieval Algorithm for CLWP

- Observation errors depend on retrieved cloud liquid water paths and no retrieval algorithms can be perfect.
- Separating precipitating clouds and non-precipitating clouds cannot be perfect.
Cloud water error statistics show “non-Gaussian” distribution.

Approach 1
- Single control variable: total moisture, $q_{\text{tot}}(=q+q_c)$
- UK Met Office has been using q_{tot} as a single moisture control variable
- Emily Liu has been working to set up with q_{tot} in GSI. (Next talk)

Approach 2
- Keep two separate control variables for water vapor and clouds
- However, develop a different form of cloud water related control variable of which error distribution is more Gaussian than q_c
- ECMWF’s current efforts are toward this approach.
- This will be tested for comparisons with Approach 1.
1. There has been great progress in assimilating AMSU-A cloudy radiance data in NCEP Global Data Assimilation System (GDAS).

2. New observation errors and quality control methods, which are applicable for clear and cloudy sky conditions, have been developed.

3. For now, cloud water mixing ratio for each layer is used as a control variable and background error covariance from NMC method has been used.

4. Assessments based on statistics for AMSU-A and MHS sounders demonstrated that more data in cloud sensitive channels are being assimilated by including cloudy radiance data and brightness temperature departures got reduced for those channels.

5. Preliminary results from case studies show that cloud fields are now being actively assimilated and cloud analysis fields get much closer to the retrieved values. Assessments for other fields and forecast skill scores are in progress.
Ongoing Work & Future Plans

• Improving bias corrections by testing different predictors.
• Adding observations in *precipitating* cloudy conditions to the current cloudy radiance data assimilation experiments.
• Testing impacts on GFS model forecasts and HWRF model forecasts skill scores.
• Comparisons of static background error covariance with ensemble background error covariance.