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Overview	of	the	Combined	Retrieval	Problem	and	Similari5es	to	the	Data	Assimila5on	Problem	

Strategies	and	Approaches	to	Combined	Radar/Radiometer	Precipita5on	Retrievals	

Challenges	for	Retrievals:	Advanced	Forward	Models	and	Realis5c	State	Constraints	

The	 remote	 sensing	 of	 precipita5on	 by	 means	 of	 radar	
measurements	 and	 passive	 microwave	 radiometer	
measurements	progressed	along	mostly	 	separate	paths	un5l	
the	launch	of	the	TRMM	in	1997.	Spurred	by	the	simultaneous	
measurements	 from	 its	 Precipita5on	 Radar	 (PR)	 and	
microwave	 imager	 (TMI),	 mo5va5on	 increased	 to	 develop	
products	that	made	use	of	both	instruments	in	order	to	beWer	
understand	 biases	 in	 the	 single-instrument	 products	 and	 to	
develop	 a	 superior	 precipita5on	 dataset	 using	 all	 available	
measurements.	 These	 efforts	 con5nue	 with	 TRMM’s	
successor,	 GPM,	 which	 provides	 an	 addi5onal	 radar	
frequency,	 	 sounding	 channel	 measurements,	 and	 coverage	
into	high	la5tudes.	

Precipita5on	 retrievals	 from	 radar	 or	 radiometer	 are	
fundamentally	 under-constrained	 by	 observa5ons	 alone.	 Thus,	
the	 goal	 of	 a	 physically-based	 retrieval	 algorithm	 is	 to	minimize	
forward	 model	 error	 in	 simula5ng	 observa5ons	 from	 the	
retrieved	state	variables,	while	constraining	the	state	variables	to	
realis5c	values,	effec5vely	minimizing:	
	

	J	=	(X-Xa)TSa-1(X-Xa)	+	(Y-f(X))TSy-1(Y-f(X))		
	
This	 is	 fundamentally	 similar	 to	 data	 assimila5on	 in	 numerical	
weather	predic5on,	where	the	goal	 is	 to	produce	an	 ini5al	state	
that	will	provide	an	accurate	 forecast,	with	the	major	difference	
being	the	dynamic	nature	of	constraints	on	the	state	variables.	

Varia5onal	(1D)	
	
	
	
	
	

	
	
Cost	func5on	is	minimized	for	each	profile.	
State	variables	can	describe	PSD	at	each	
ver5cal	level	as	well	as	non-precipita5on	
parameters	(cloud	water,	water	vapor).	
	
Pros:	
-Computa5onally	efficient	
	
Cons:	
-Requires	co-located	(or	deconvolved)	
radiometer	Tbs.		
-Can’t	account	for	3D	effects	(radia5on	
“leakage”,	slant	path)	
-Does	not	converge	for	strongly	nonlinear	
forward	models	
	
	
Example:	MiRS	(Boukabara	et	al,	2011)	

Varia5onal	(3D)	
	
	
	

	
	
	
	
Cost	func5on	is	minimized	over	a	scene.	
State	variables	describe	a	few	parameters	
per	profile	(e.g.,	profile-averaged	PSD	
parameters).	
	
Pros:	
-Explicitly	account	for	3D	geometry	(slant	
path,	mismatched	radar/radiometer	fields-
of-view,	3D	RT)	
	
Cons:	
-Computa5onally	expensive	(limits	number	
of	parameters	per	pixel	that	can	be	
retrieved)	
-Does	not	converge	for	strongly	nonlinear	
forward	models	
	
Example:	Munchak	et	al.	(2010)	

Ensemble	(1D)	
	
	
	
	
	
	
	

Mul5ple	solu5ons	to	Ku	radar	profile	are	
generated	with	different	PSDs,	cloud	
water,	humidity	profiles.	Ensemble	
covariances	are	used	to	adjust	each	
solu5on	to	match	other	observa5ons	(TBs,	
Ka	reflec5vity).	
	
Pros:	
-Computa5onally	efficient	
-BeWer	for	non-linear	forward	models	
	
Cons:	
-Requires	co-located	(or	deconvolved)	
radiometer	Tbs.		
-Can’t	account	for	3D	effects	(radia5on	
“leakage”,	slant	path)	
	
Example:	GPM	Combined		

Ensemble	(3D)	
	
	
	
	
	
	
	
	
	
	
1D	 ensemble	 method	 extended	 to	 3D	
scenes.	 Benefits	 from	 realis5c	 spa5al	
correla5ons	 between	 state	 variables	 –	
most	similar	to	NWP	DA?	
	
Pros:		
-Explicitly	 account	 for	 3D	 geometry	 (slant	
path,	mismatched	radar/radiometer	fields-
of-view,	3D	RT)	
-BeWer	for	non-linear	forward	models	
	
Cons:	
Computa5onally	expensive	
	
Example:	Fielding	et	al.,	2014	

+	
Ensemble	covariances	 State	

adjustment	
Ini5al	Error	

The	GMI	channels	at	166	 (V&H),	183+-3,	and	183	+-7	GHz	
provide	 addi5onal	 opportunity	 to	 observe	 light	
precipita5on	 and	 beWer	 constrain	 precipita5on	 ice	
par5cles,	but	radia5ve	transfer	modeling	must	be	adequate	
to	 simulate	 these	 frequencies	 when	 forced	 to	 match	 the	
observed	radar	reflec5vi5es	as	well.	
	
	
	
	
	
	
	
	
	
	
	
	
	
Some	 key	 parameters	 that	 are	 well-observed,	 yet	 poorly	
modeled	 in	 current	 GPM	 retrievals	 include	 the	
enhancement	 of	 scaWering	 with	 frequency	 and	 the	
polariza5on	difference	at	166	GHz.	Three-dimensional,	fully	
polarized	 models	 with	 realis5c	 par5cle	 scaWering	 physics	
and	 preferen5al	 orienta5ons	 will	 be	 needed	 to	 make	 full	
use	of	these	observa5ons.	

Spaceborne	 radar	 at	 the	 frequencies	 (Ku	 and	 Ka)	 and	
resolu5on	(5km)	of	GPM	DPR	suffers	from	severe	mul5ple	
scaWering	 (MS)	 and	 non-uniform	 beam	 filling	 (NUBF)	
effects.	 Since	 these	 reduce	 the	 informa5on	 content	 of	
observa5ons	 near	 the	 surface,	 they	 are	 a	 source	 of	 error	
and	bias	if	not	accounted	for	correctly.	NUBF	can	also	lead	
to	biases	in	simulated	brightness	temperatures	when	a	2D	
radia5ve	transfer	model	is	used.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

A	 common	 theme	among	 the	 retrieval	 strategies	 above	 is	
the	need	 to	 constraints	on	 the	 state	variables.	 These	may	
take	 the	 form	 of	 spa5al	 (ver5cal	 and	 horizontal)	
correla5ons	between	the	retrieved	PSD	variables	as	well	as	
realis5c	 representa5ons	 of	 the	 cloud	 water	 and	 rela5ve	
humidity	 profiles	 within	 precipita5on,	 along	 with	 surface	
emissivity	 and	 radar	 backscaWer	 cross-sec5on,	 including	
effect	 on	 ongoing	 or	 recent	 precipita5on	 (GMI-derived	
wind-backscaWer	 model	 is	 shown	 below).	 Environmental	
proper5es	that	have	a	weakly	constrained	by	observa5ons,	
but	s5ll	needed	for	forward	modeling	(temperature	profile)	
are	also	needed	and	usually	derived	from	ancillary	 (model	
analysis	or	forecast)	data.	
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