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Review of Data Assimilation
Methods
“Data assimilation refers to three problems in time
series analysis. Given a time seriesωk, or possible a
continuous function of space and timeω(x, t) which
may be noisy or incomplete, beginning with time
t = −T and ending att = 0, the “present,” define
three problems:

• The prediction problem What willω be in the
future?

• The filtering problem What is the best estimate of
ω now, i.e., att = 0?

• The smoothing problem: What is the best
estimate ofω for the entire time series?
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Origins of Data Assimilation
Gauss and Legendre were interested inplanetary
orbits.

• These are specified by 6 parameters, theorbital
elements.

• Three observations are necessary to determine the
orbital elements.

• If more than three observations are available
choose elements to minimize:

∑

(predicted position − observed position)2

This is theleast squares method
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Variational Methods
Given

• A model:ut − Lu = f , a linear equation that
describes the evolution of small deviations from a
first-guess solution, thebackground.

• Chosen to mimic the “true” stateu(t) assumed to
evolve according tou(t)

t − Lu(t) = f + b for
some random functionb

• Estimated initial conditionu(0) with random
errore0

• Observationsz = Hu(t) + eobs

Ocean Data Assimilation – p. 4/44



Variational Methods
Minimize the cost function:

J(u) =

∫

(ut − Lu − f)TW−1(ut − Lu − f)dt +

(u(0) − u0)
TV −1(u(0) − u0) +

(z − Hu)TR−1(z − Hu)

The minimizer ofJ is the BLUE ofu(t) if:

E(bbT ) = W

E(e0e
T
0 ) = V

E(eobse
T
obs) = R
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Variational Methods
• We begin withu a (possibly) vector-valued

function of time.
• This formulation generalizes naturally to

functions of time and space, in which case:
• L would be a partial differential operator
• The constraint on the initial condition would

be an integral
• There might be a constraint on the boundary

conditions.

We will derive all of the linearized methods from here.
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The Variational Method
Without loss of generality, we can setf = u0 = 0. so:

J(u) =

∫

(ut − Lu)TW−1(ut − Lu)dt

+u(0)TV −1u(0) +
N
∑

j=1

R−1
j (zj − Hju(tj))

2

≡ < u,u > +
N
∑

j=1

R−1
j (zj − Hju(tj))

2

The cost function defines a positive definite bilinear
form < ·, · > ( Think dot product )
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Vectors and Functions
Consider a scalar valued linear functionf(v), i.e., the
domain off is R

n and the range isR.

v =
∑

j

vjej

so

f(v) =
∑

j

vjf(ej) ≡ v · a

whereaj = f(ej).
. . . now imagine thatv is a function instead of a
vector.
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The Representer Method
Define thejth representerrj:

< rj, u >= Hju(tj)

for any admissible functionu
• The representerrepresentsthe measurement

functional in terms of the new inner product.
• This allows us to form an orthogonal

decomposition of the space of admissible
functions.
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Orthogonal Decomposition of
State Space
Write the minimizer̂u of the functionalJ , as:

û =
N
∑

j=1

bjrj + G

where thebj are constants and

< rj, G >= 0, j = 1, . . . , N

so states inG areunobservable
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Solution in Representer Space
The cost function then becomes:

J(u) =
N
∑

i,j=1

bibj < ri, rj > + < G,G > +

N
∑

j=1

R−1
j (zj −

∑

i

bi < ri, rj >)2

• We might as well pickG = 0.
• Picking nonzeroG doesn’t change the data misfit

and can only increase the cost.
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The Representer Method
The original infinite dimensional problem is reduced
to finding a finite number of coefficientsbj:

∂J

∂bk

= 2
∑

j

bj < rj, rk > −

2
∑

j

R−1
j (zj− < rj,

∑

i

biri >) < rj, rk >

Setting∂J/∂bk = 0 leads to:

∑

j

< rj, rk >

(

Rjbj +
∑

i

< ri, rj > bi − zj

)

= 0
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The Representer Method

∑

j

< rj, rk >

(

Rjbj +
∑

i

< ri, rj > bi − zj

)

= 0

In matrix form. Assume, for now,R = diag(Rj) and
Mi,j =< ri, rj > therepresenter matrix. The solution
is then defined by:

(M + R) b = z

whereb is the vector of representer coefficients andz
is the vector of observations.
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What Value Should the Cost
Function Be at Minimum?
At the minimum,

J = zT (M + R)−1M(M + R)−1z +

(z − M(M + R)−1z)TR−1(z − M(M + R)−1z)

(lots of algebra . . .)

= zT (M + R)−1z

Soz should be a random variable with covariance
M + R andJ is a random variable withχ2

distribution on N degrees of freedom.
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Computing Representers
Schematically:

< u,v >∼ (Mu,Mv); M ≡
∂

∂t
− L

We want:

(Mu,Mr) = (u,M∗
Mr) = (u, δ)

So solve:

M
∗α = δ

Mr = α
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Computing Representers
Begin with the simplest case: a linear, scalar ODE:

u̇ − au = F

F , u(0) unknown. First guess:F = 0; u(0) = 0
Given measurementsyj of the system at timestj

J =

∫ T

0

(u̇ − au)W−1(u̇ − au)dt + u(0)V −1u(0) +

∑

(yj − u(tj))
2/Rj

≡ < u, u > +
∑

(yj − u(tj))
2/Rj
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Computing Representers
Thejth representer is defined by

< rj, v >= v(tj) =
∫ T

0 δ(t − tj)v(t)dt
Step 1:
Define therepresenter adjointαj = (rj −ar)W−1, so:

< rj, v > =

∫ T

0

α(v̇ − av)dt + r(0)V −1v(0)

=

∫ T

0

δ(t − tj)v(t)dt
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Computing Representers
Step 2:
Integrate by parts:
∫ T

0

(−α̇ − aα)vdt + αv|T0 + rj(0)V
−1v(0) = v(tj)

Step 3: Solve

−α̇ − aα = δ(t − tj)

α(T ) = 0

rj(0) = α(0)V

ṙj − arj = Wα
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Remarks
• α is the Green’s function for the initial value

problem
• As such, in general,α is the solution to an adjoint

problem
• Generalization to vector ODEs and PDEs is

straightforward
• Generalization to different measurement

functionals is also straightforward.
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Summary of the Representer
Method

• The linear inverse problem is potentially a
minimization problem over∞ dimensions

• In practice the observations determine only a
finite number of degrees of freedom

• A quadratic cost function can define a useful
orthogonal decomposition of state space into two
components:
• The space spanned by the representers
• Its orthogonal complement, all members of

which areunobservable, i.e., they give
measurements with value zero, by
construction.
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Summary, continued
• The minimization can thus be carried out over the

space of representers
• The representers can (but need not be) calculated

explicitly
• Basic references for the representer method:

Bennett, 1992, 2002, Cambridge University Press
• There are methods for applying to representer

method in cases in which the number of
observations is huge; see Rosmond and Chua,
Tellus 2006.
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The Variational Approach
Calculate the first variationδJ of the cost functionJ
and setδJ = 0 A slightly more general cost function:

J(u) =
1

2

∫ T

0

∫

Ω

∫

Ω

(ut(x1, t) − Lu)W−1

(ut(x2, t) − Lu)dx1dx2dt +

1

2

∫

Ω

∫

Ω

u(x1, 0)V
−1u(x2, 0)dx1dx2 +

1

2
zTR−1z

wherez is the innovation vector, with components
zj = yj − Hju.
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The Variational Approach
As before, write:

λ = (ut − Lu)W−1

Foru → u+ δu setδJ = J(u+ δu)−J(u) = O(δu2)
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The Euler-Lagrange Equations

−λt − L∗λ = zTR−1H

λ(T ) = 0

u(x, 0) = λ(x, 0)V

ut − Lu = Wλ

Write λ =
∑

j ajαj where theαj are therepresenter
adjoints:

−αjt − L∗αj = Hjδ(t − tj)

α(T ) = 0

→ the representer solution: Bennett (1992, 2002) or
the tutorial at http://iom.asu.edu.
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Weak and Strong Constraints
We have assumed that the model is imperfect. This is
theweak constraintcase. Recall the cost function:

J(u) =
1

2

∫ T

0

∫

Ω

∫

Ω

(ut(x1, t) − Lu)W−1

(ut(x2, t) − Lu)dx1dx2dt +

1

2

∫

Ω

∫

Ω

u(x1, 0)V
−1u(x2, 0)dx1dx2 +

1

2
zTR−1z

W = themodel error covariance.
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Weak and Strong Constraints
We defined theadjoint variableλ = (ut − Lu)W−1.
WhenW → 0. λ becomes aLagrange multiplierand
we recover thestrong constraintcase.
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The Strong Constraint Case
In the strong constraint case, the Euler-Lagrange
equations become:

−λt − L∗λ = zTR−1H

λ(T ) = 0

u(x, 0) = λ(x, 0)V

ut − Lu = 0

• L is the TLM;L∗ is the adjoint model.
• These equations are solved by repeated iterations

of the forward and adjoint models.
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Variational Methods: Summary
• The simplest and most common variational

methods work by minimization of a quadratic
cost function.

• In most problems in ocean data assimilation,the
state function that minimizes the mean square
data misft is not unique

• The quadratic cost function defines a
decompositon of state space into the space
spanned by the representers and its orthogonal
complement

• Elements orthogonal to the representers have no
effect on the model-data misfits, and can usually
be neglected.
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Variational Methods: Remarks
• This is a linearized method. In the case of strong

nonlinearity, the following iterative procedure has
been suggested:
1. Calculate the background, possibly by the

forward model
2. Solve the variational problem for the

increment to the background
3. Add the increment to the background to form

a new background.
4. Repeat steps 2 and 3 as often as necessary or

desired
• This process may and may not converge
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Variational Methods: Remarks
• The TLM is, by definition, derived from the

Taylor series expansion of the nonlinear operator
that defines the model.

• Sometimes it is convenient to use a linearization
that differs from the TLM, e.g., the TLM may be
unstable, even when the nonlinear system is well
behaved.
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Variational Methods: Remarks
• Strong constraint methods are common in NWP,

but less so in ocean DA
• Most of the improvement in weather forecasts

that results from DA is due to improved initial
conditions
• In many if not most problems in ocean DA,

errors in forcing are the most important error
sources.

• Some authors refer to DA systems in which
all of the errors are assumed to come from the
forcing as “strong constraint” methods.
Formally they are weak constraint methods.
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The Filtering Problem
Given a time seriesωk, or possible a continuous
function of space and timeω(x, t) which may be
noisy or incomplete, beginning with timet = −T and
ending att = 0, the “present,” What is the best
estimate ofω?
Given current observations, we willnot revise our
estimate of past states.
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Filtering
Consider a single step of a prediction-analysis cycle:

1. Given an initial conditionu0 at t = t0, predict the
new stateu1 at the next timet1: u

f
1 = Lu0.

2. Given observationsy at timet1, form an
improved estimateua

1 = u
f
1 + v1 of the stateu1

3. In most cases, choosev1 ∝ y−Hu
f
1 , whereHu

f
1

is the predicted value of the observed quantity.
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Filtering: Variational Formula-
tion
Cost function:

J = vT
0 P−1

0 v0 + (v1 − Lv0)
TQ−1(v1 − Lv0)

+(z − Hv1)
TR−1(z − Hv1)

z = y − Hu
f
1
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Filtering: Variational Formula-
tion
Minimization ofJ by the representer method leads to:

v1 = (LP0L
∗ + Q)HT

[

H(LP0L
∗ + Q)HT + R

]−1
z

Recallv1 is the correction to the first guessuf
1 .
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Putting it all together

ua
1 = u

f
1 +

(LP0L
∗ + Q)HT

[

H(LPL∗ + Q)HT + R
]−1

z

This is usually broken down into steps:

1. u
f
1 = Lu0

2. P f
1 = LP0L

∗ + Q

3. K = P f
1 HT

[

HP f
1 HT + R

]−1

4. ua
1 = u

f
1 + K(y − Hu

f
1)
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Statistics
We assume our model, given by:

uj+1 = Luj

differs from the “truth” by some random errorǫ

ut
j+1 = Lut

j + ǫ

ǫ is white in time with covarianceE(ǫǫT ) = Q
The error in the state is given bye0 = ut

0 − u0

with covarianceP0 = E(e0e
T
0 ) at timet = 0.

The observation error is white with mean zero and
covariance R.
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Filtering: Statistics
Then:
The state error covariance evolves according to:

P f
1 = E(e1e

T
1 ) = LE(e0e

T
0 )L∗ + Q

The error in the corrected state should be smaller than
the error in the original state. The covariance of the
error in the updated state is:

P a
1 = (I − KH)P f

1
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The Filter Solution
Putting it all together:

1. u
f
1 = Lu0

2. P f
1 = LP0L

∗ + Q

3. K = P f
1 HT

[

HP f
1 HT + R

]−1

4. ua
1 = u

f
1 + K(y − Hu

f
1)

5. P a
1 = (I − KH)P f

1

This is theKalman Filter.
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Remarks
• This is one of many ways to derive the Kalman

filter
• Implementation is straightforward, but potentially

very expensive
• Not necessary to write complex adjoint code
• The scalar quantity

(y − Hu
f
1)

T (HPHT + R)−1(y − Hu
f
1)

should be a random variable withχ2 distribution
onN degrees of freedom, whereN is the number
of observations

Ocean Data Assimilation – p. 40/44



Remarks
• There are many natural generalizations and

simplifications of the KF:
• Theextended Kalman filter
• Use a static error covarianceP and eliminate

the repeated calculations.
• Use a collection of model runs with randomly

chosen initial conditions and forcing to
calculate an approximate covariance. This is
theensemble Kalman filter

• Neglect errors outside of a low-dimensional
subspace of the full state space. This is the
reduced state space Kalman filter.
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Final Remark on Methodology
• Data assimilation is a highly technical subject
• When you understand the technical aspects, you

are at thebeginning, not the endof the subject.
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Features of Ocean Data Assimi-
lation

• The goal of most atmospheric DA is
improvement of weather forecasts. No similar
single purpose drives ocean DA

• Ocean DA systems for different purposes have
different requirements
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Ocean Analysis Products
• There are now a number of ocean analysis

products based on DA, e.g.
• Ocean S4, ECMWF:
www.ecmwf.int/products/forecasts/
ocean/oras4_documentation/
index.html

• Simple Ocean Data Assimilation (SODA),
University of MD:
www.atmos.umd.edu/~ocean/

• ECCO
www.ecco-group.org/products.htm

• Mercatorwww.mercator-ocean.fr/eng/
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