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Background

*NAVDAS:

* NRL Atmospheric Variational Data Assimilation System (Daley and
Barker, 2000, 2001). It is a 3DVAR system cast in observation-
space.



Background ...

Representer Algorithm:
* The representer algorithm was introduced into oceanography by

Bennett and Mcintosh (1982), Bennett and Thorburn (1992). This
algorithm is one way to solve the generalized inverse problem —
that is, to variationally minimize a generalized cost function. The
computational cost is proportional to the number of observations.



Background ...

*Accelerated Representer Algorithm:

It is a practical way (sub-optimal) to implement the representer
algorithm in a cycling operational environment (Xu and Daley,
2002). It is similar to the iterative method described by Egbert et al.
(1994), Amodei (1995), Courtier (1998), where it is referred as the
4D-PSAS, and Chua and Bennett (2001).



Background ...

*NAVDAS-AR:

* NAVDAS-AR is a natural four dimensional extension of NAVDAS,
where “AR” stands for accelerated representer.

* NAVDAS-AR is designed to be used for both the global and
regional data assimilation applications.

 However, currently we only apply it to the global application for
two reasons: (1) There is no lateral boundary condition in the
global case. (2) We have in-house expertise (Tom Rosmond) in the
global (NOGAPS) adjoint system.

* NAVDAS-AR uses the existing NAVDAS and NOGAPS (Hogan and
Rosmond, 1991) infrastructures. It parallels the 4ADVAR algorithm
iImplemented at ECMWEF, but is an observation space algorithm, as
IS NAVDAS, and doesn’t require a perfect model assumption.
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Formulation of NAVDAS-AR

A genereralized cost function

:Xn. S 91/1()(11._1 ):I

where x’ = m(xﬁ_l), and x_is a state vector at time t_ of length 1.

y is a vector of all observations of length K. 9/ is a nonlinear

prediction model, such as NOGAPS or COAMPS™, 9/
represents forward (or observation) operators and can be

nonlinear. The analysis x" is found when J =]

Notice that P,

min *

Q.. .,and R are error covariances of initial background, model,
and observations & (observation operators), respectively.



Formulation of NAVDAS-AR

Two special cost functions

1. 3DVAR:
20 =[x -xs T [P T [t —xa [+ [y-oe)] R [y-906)]

Since there is no time evolution, there is no need for a
prediction model in the cost function.

There are usually specified simple multivariate relationships,
such as the geostrophic relationship (strong or weak
constraint).

2. Strong constraint 4DVAR:
=[x [P [xb-xt]+[y-orx)] R [y-o0x)],
X' = M(xj‘l_l), and x’ = .ﬂ/l(xﬁ_l).
The estimated initial condition x; (control variable) controls the

whole estimated state in space and time for the assimilation
time period.



Formulation of NAVDAS-AR ...

: Euler-Lagrange equations

Analysis x" which minimizes J satisfies the following so called
Euler-Lagrange (EL) system,

h,—M7 = {HTR'I[y—%(Xa)]} , (1)

N
X?l - m(xi—l) = Zan'?Ln’ (2)
with an initial condition x; = x; +P’M’.,.

Equations (1) = (2) form a nonlinear coupled EL system and cannot
be solved with a simple direct integration. An iterative procedure
can be used to partially account for the nonlinearity. If 4/ and %
are linear, however, one can decouple the system using the
Representer Method of Bennett (1992).



Formulation of NAVDAS-AR ...

Solution to the linear problem (inner loop)

In case of linear 9/ and 7/, we can formally write the analysis as,
x'=x"+P'H'[HP'H" +R] [y-Hx"]
171
=x"+ [HR‘IHT +[ P ] 1} H'R™|y-Hx" |

-1
1. We first solve the problem z = [HP"HT +R} [y- Hx"], the
solver.

2. We then post-multiply the solution z by P’H", the post-
multiplier.

3. Here P"=MQ M' or P’ = MM, P’M,M' (for perfect model)
is a gigantic covariance matrix in space and time and is
unknown except for the [ < I block P at time t,,

4. P'H' is the background error covariance between model
and observation spaces. HP'H' is the background error
covariance in the observation-space, is also known as the
Representer Matrix. Notice that P°’H' and HP"H' can also be
estimated using ensemble techniques, such as ExKFs.



Formulation of NAVDAS-AR ...

A special matrix/vector multiplication procedure

In both the solver and post-multiplier, we need to evaluate the
following matrix/vector multiply operation many times during each
inner loop,

g=|P'H' |z, (3)

where z is a known vector of length K and ¢ is a vector of length

N -1, which is the result of the matrix/vector multiply. Following are
the steps to obtain g through the use of tangent linear and adjoint
models.

1. Define z' =(z,..z,..z,) and g' =(g,..g,..g.) , where z_ and g,
are vectors of length k_and I, respectively. z_is assumed to be
known for all n.

2. H' =(Hf...HIT1...H§) is a Kx N-I block diagonal matrix with N
blocks, each of size k_x I.



Formulation of NAVDAS-AR ...

A special matrix/vector multiplication procedure

3. Introduce a vector of length [, f which is defined for each time
. Let f be the output from the backward adjoint model, M
startlng at time t, and with forcing H_ z_,

f =M f_+Hz (4)

n n+l nn?

subject to f,, = 0. We refer to (4) as the which
produces a vector f, at time t¢,.

4. The matrix/vector multiply at time t_, ¢ is simply the output
from the forward tangent linear model, M __, starting at time ¢,

gn_Mn lgn1+Qn n? (5)

subject to g, = P’f,. Currently we use a similar procedure as
described in Daley and Barker (2000, 2001) to calculate g,. We
refer to (5) as the

5. It requires one backward and forward sweep to calculate
P'H'z.



Formulation of NAVDAS-AR ...

Solution to the nonlinear problem (outer loop)

In case of nonlinear %/ and 7, an iterative method is used to
partially account for the nonlinearities by solving a sequence of
coupled linear EL systems.

Let us introduce an a priori state (xp)j for the " outer loop iteration,
such that (xp)j is the solution to a linear model that is linearized

) . VR
around the previous analysis (x')

(x), =Mz | (x) ()] |-((x)]) ) =0, for1<n <N

subject to (x‘f’)j

0

. (6)

b
_XO

Notice we use the background as the first guess, such that

(xa)o =x".



Formulation of NAVDAS-AR ...

Solution to the nonlinear problem (outer loop)

The analysis for the j” iteration, (xa)j, may now be written as,
() = (x) +(p*) " [0 ] B
where,

e Do o] ool o e |

and,
T

(P)" =M7Q' M ],
for a perfect model,

(p*)" =mrmi'pr M (M

Summary:
e A linear prediction model is used to generate background to be
used for the inner loop in each subsequent outer iteration.

e The initial condition for each subsequent background is always
the same.



Building Blocks of NAVDAS-AR

eNonlinear and linearized NOGAPS:

* Nonlinear NOGAPS is used in first outer loop to provide the
trajectories for innovation calculation and the TLM/Adjoint models.

e Linearized NOGAPS is used in subsequent outer loops to provide
these trajectories

Adjoint and tangent linear (TLM) of NOGAPS:

* Evolve innovations (Adjoint) and analysis increments (TLM) in
time.

Observation operators and associated Jacobians:
* Used to calculate/recalculate the innovation vector.

*A preconditioned Conjugate Gradient (CG) solver:
e Perform the inner-loop minimization.

*Error covariance specifications/models:
e Control the outcome of data assimilation.



Initial Test of the Inner Loop

Assimilation 09Z — 15Z 26DEC2002 « Observations: A NAVDAS

Temperature Analysis Corrections at 12Z innovation vector (~400,000
observations) was used in

both runs except that the
observations are binned in
half hour bins in NAVDAS-
AR run. (NAVDAS-AR was
designed to use the existing
NAVDAS infrastructure.)

* Dynamic model and
background: A T47L30
NOGAPS was used as the
forecast and tangent-linear
models. A perfect model
assumption, though not
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*NAVDAS COST O(N2), N=ob #
*NAVDAS-AR COST F(Inner loop model resolution) + O(N)
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Initial Test of the Outer Loop
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* A new procedure to treat the non-
linearity in NAVDAS-AR has been
implemented and tested.

* Eight outer loops were used to
examine the convergence

property.

* The preliminary results suggested
that the outer loop converges after
3 iterations.



Convergence of the Outer Loops
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Convergence of the Outer Loops ...
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Convergence of the Outer Loops ...
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Impact of SSM/l Windspeeds and TPW ...
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TEMPERATURE AT 500.0 MBS(ANALINC) :

Impact of SSM/l Windspeeds and TPW ...
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the Southern
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Issues and Opportunities

e |SSUeS:

* A preconditioner for the CG solver using the Lanczos
connection

A more efficient convolution of initial background error
covariance with the adjoint sensitivity at the initial time

* Updating flow-dependent initial background error covariance
In a cycling operational environment

e Accurate, efficient, and portable observation operators and
the associated Jacobians and their adjoints

*Including impact of model errors

e Opportunities:

e Study impact of new sensors on analysis using NAVDAS-AR.
Examine four-dimensional observation sensitivity using the
adjoint of NAVDAS-AR.



Concluding Remarks

\We have formulated and constructed a natural four
dimensional follow-on to NAVDAS, NAVDAS-AR, which was
Initiated by Roger Daley at NRL.

*The minimization component (inner loop) to the linear case
has been developed and the results of initial testing are
encouraging.

*A new iterative procedure (outer loop) to account for some
of the nonlinearity in prediction model and observation
operators has be developed and tested.

eImpact of model error needs to be properly treated and
studied.

*Help is needed in terms of observation operators and the
associated TLM and adjoints.
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NAVDAS Adjoint System
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Observation and Background Sensitivity

o1/dy=(HP"H" +R) HP'a//ox’

o1/ ox® = [I -1’ (HPbHT + R)_l HPb}aJ/axa



