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Data Assimilation

e Combine “optimally” short-term forecasts with
observations.

e 3D-Var and Optimal Interpolation: used for many years,
fixed background error covariance B

 Advanced methods: they evolve B (“errors of the day”):
v 4D-Var: widely used in operations. Requires model
adjoint. :~(
v Ensemble Kalman Filter, no adjoint :-)
v Hybrids: B from EnKF, variational solution



Conclusions from the THORPEX
Workshop in Buenos Aires (2008)

v 4D-Var and EnKF are competitive in skill

v Hybrid approach best (Buehner et al, 2008, 2009)
v There are no fatal disadvantages for either system
v' Computationally competitive

v" About 40-100 ensemble members needed from storm to
global scales for EnKF

v Both methods have developed approaches to deal with
model errors and nonlinearities

As a result, Japan, NCEP, ECMWEF, Canada, Brazil,
Germany... are now exploring EnKF (or hybrid
EnKF+variational) for operations. 3



This talk: tools that improve EnKF
We adapted ideas inspired by 4D-Var:

v No-cost smoother (Kalnay et al, Tellus 2007)

v “Running in Place” and “Quasi Outer Loop”, deal with spin-up,
nonlinearities and long windows (Kalnay and Yang, QJ 2010, Yang and Kalnay,
MWR 2011)

v" Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008) (correction)
v' Coarse analysis resolution without degradation (Yang et al., QJ, 2009)
v' Low-dimensional model bias correction (Li et al., MWR, 2009)

v Simultaneous estimation of optimal inflation and observation errors (Li et
al., QJ, 2009).

Examples of applications:

v" Estimates of surface carbon fluxes as parameters (Kang et al, 2011)
v" Global Ocean Data Assimilation (Penny, PhD thesis, 2011)

Comparison of EnKF/4DVar/ECCO in a simpl4e
coupled ocean-atm model (Singleton, 2011)




[Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)
(a square root filter)

(Start with initial ensemble)

Observations

l

Observation | ensemble

operator “observations

I ensemble [analyses

Model

ensemble forecasts

* Model independent
(black box)

e Obs. assimilated
simultaneously at each
grid point

* 100% parallel

* No adjoint needed

* 4D LETKEF extension
» Computes weights
explicitly



Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot




Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

of

The LETKF algorithm can be described in a single slide!




Local Ensemble Transform Kalman Filter (LETKF)

Globally:
b a
Forecaststep: X, =M, (Xn—l,k
Analysis step: construct b _ | 0 _ %P b _gb .
y P X —|:X1—X .. Ix, —X ],

y =HX) Y, =]y =¥ 1.1y, =" |

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

P =[(K-DI+ Y RY | ; W = [(K - )P']"”

Analysis mean in ensemble space: W' =P‘Y”'R7'(y° -y")
and add to W¢“ to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of

X! = XzW“ +X” . Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are analysis
weights W and perturbation analysis matrices of weights W¢. These
weights multiply the ensemble forecasts. 8



No-cost LETKF smoother (x): apply at t_, the same
weights found optimal at t.. It works for 3D- or 4D-LETKF

4D-LETKF

t,_, time t

The no-cost smoother makes possible:

v Quasi Outer Loop

v “Running in place” (faster spin-up)
v Use of future data in reanalysis
v

Ability to use longer windows and nonlinear perturbations



No-cost LETKF smoother
tested on a QG model: it works...

Analysis error of potential vorticity

LETKEF analysis <t % X
. Xa =X + Wa 0016
at time n n n no_n LETKF Analysis

Smoother analysis _,
od - X' w¢
at time n-1 X =X T A

n

“Smoother” reanalysis

RMS Error

This very simple smoother allows us to go back

and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis®



Nonlinearities and “outer loop”

The main disadvantage of EnKF is that it cannot handle
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

It doesn’t have the outer loop so important in 3D-Var and
4D-Var (DaSilva, pers. comm. 2006) -

Lorenz -3 variable model
(Kalnay et al. 2007a Tellus),
RMS analysis error:

4D-Var LETKF
Window=8 steps  0.31 0.30 (linear window)
Window=25 steps 0.53 0.66 (nonlinear window)

With long windows + Pires et al. => 4D-Var clearly wins! 1"



No-cost LETKF smoother (x): apply at t_, the same
weights found optimal at t.. It works for 3D- or 4D-LETKF

4D-LETKF

-5
X g ™ =
- ¥
%’

L,y time t

Quasi Outer Loop (QOL): correct the analysis mean at t__,

Running in Place (RIP): correct all the analyses at t,

...and then do the data assimilation to t, again 1



Nonlinearities: “Quasi Outer Loop” (QOL)

Quasi Outer Loop: use the final weights to correct only the
mean initial analysis, keeping the initial perturbations.
Repeat the analysis once or twice. It re-centers the
ensemble on a more accurate nonlinear solution.

Lorenz -3 variable model RMS analysis error
4D-Var LETKF

Window=8 steps  0.31 0.30
Window=25 steps 0.53 0.66

13



Nonlinearities, “QOL" and "Running in Place”

Quasi Outer Loop: similar to 4D-Var: use the final weights
to correct only the mean initial analysis, keeping the
initial perturbations. Repeat the analysis once or twice.
It centers the ensemble on a more accurate nonlinear
solution.

Lorenz -3 variable model RMS analysis error

4D-Var LETKF LETKF

+QOL
Window=8 steps  0.31 0.30 0.27
Window=25 steps 0.53 0.66 0.48

“‘Running in place” smoothes both the analysis and the
analysis error covariance and iterates a few times...

14



Running in Place: Results with a QG model

Analysis error of potential temperature
T

RIP accelerates
EnKF spin-up
* (e.g., hurricanes,
) severe storms)

L | | 1 | | | 1 |
20 40 60 80 100 120 140 160 180 200
DA cycles

Spin-up depends on initial perturbations, but RIP works well even with random perturbations. It

becomes as fast as 4D-Var (blue). RIP takes only 2-6 iterations.
15



Yang: 24 hr forecast of simulated Typhoon Sinlaku
(trajectory and intensity were both improved with RIP)
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Sigma

Sigma

Typhoon Sinlaku: RIP improves the error covariance
(Yang et al., 2011)

(a) COV(VC,U)LETKF vs. U Error

15

s ] 2 With LETKF, the error

11 13 covariance B (contours) is not
related to the actual errors

s (colors) during spin-up.

| | | | | | |
118 119 120 121 122 123 124 125 126
Longitude

(a) COV(VC,U)LETKF_RIP vs. U Error

o  With LETKF-RIP, the error

6  covariance B represents
better the the “errors of the
s day”. As a result the spin-up
 is faster and the forecast

12 iImproves.

06 | | I\ | | | | |
118 119 120 121 122 123 124 125 126
Longitude
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An application of LETKF-RIP to ocean data assimilation

Data Assimilation of the Global Ocean
using 4D-LETKF and MOM2

Steve Penny’s thesis
defense

April 15, 2011

Advisory Committee: E Kalnay, J Carton, K Ide, T Miyoshi, G Chepurin

Penny (now at UMD/NCEP) implemented the LETKF
with either IAU or RIP and compared it with SODA (Ol)

18



RMSD (°C) (All vertical levels) [ years of Reanalysis
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RMSD (psu) (All vertical levels) 7 years of Reanalysis
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Forecast sensitivity to observations
“Adjoint sensitivity without adjoint” (Liu and K, 2008)

etl—6

€ Cio = itJTO X,
Adapted from Langland
BS, e 9

and Baker, 2004)

-6hr  00hr analysis t

The only difference between €,,;and €,,_¢ is the assimilation of observations at 00hr:
(Xp — Xg16) = K(y - H(Xgl—6 )
» Observation impact on the reduction of forecast error:

Ae — (etIOeIIO - et|—6et|—6) — (eﬂo T et|—6 )(etlo + ef|—6)
21



Forecast sensitivity to observations

2 T T T T
Ae” = (etIOetIO — etl—6etl—6) — (etIO — €5 )(eno T etl—6)
T
(Xno — X, ) (e, +¢€,, )

= [M(X — X, 6)]T (e, +¢€,),so that

Ae = I:MK(y — H(X8|_6 )):IT (etIO T et|—6)

Langland and Baker (2004), Gelaro, solve this with the adjoint:

Ae’ = I:(y — H(X[(9)|—6 ))]T K'M' (€, 1+€)

This requires the adjoint of the model M" and of the data
assimilation system K'(Langland and Baker, 2004)



Forecast sensitivity to observations

Langland and

) b I AT
Ae’ =| (y-H(x) | K'M'(e0+€,0) | Borer (2004):

With EnKF we can use the original equation without “adjointing”:

Recallthat K=PH'R'=1/(K-DX‘X“H'R™" so that
MK = MX‘X“H")R" /(K-1)=X/, Y'R™ /(K -1)

T l<ra Liu & Kalnay,
Aez = [(y _ H(Xgl—6):| R 1YO X{I{) (etIO T etl—6) / (K N 1) L:uet aI,aZB?)(l)

This product uses the available nonlinear forecast ensemble X/},
and Y, =(HX").We can also verify in a targeted area where
P=1, elsewhere P=0:

r - a
Ae;=|(y— H(xj,) | RTY;XIP Ple,, +e,.4)/(K—1F



Test ability to detect a poor quality ob impact on the
forecast in the Lorenz 40 variable model

e
Observation impact from LB(+) and from ensemble sensitivity ( o)

(Liu, pers. comm.) 1 day 10 days
0.12 B - :
0.091 2
0.06 1.5
0.03 b \
| P |
~0.031 o LA \ \/\
~0.06 1 —O_ij: ¥ \/\ : —K +
~0.09 /
-0.121 —197 +
-0.15 e 2 5 10 15 20 .25 30 35 40
5 10 15 20 25 30 35 40 grid point

grid point

v'The adjoint and the ensemble sensitivity give identical observation impact on the
24 hr forecast.

v'The ensemble sensitivity is nonlinear and is able to detect bad obs for longer
forecasts.

v’ But we have to deal with localization for longer forecasts.
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Impact of dropsondes on a Typhoon
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Denying negative impact data improves forecast!

Estimated observation impact Typhoon track forecast is
DOTSTAR  00Z11SEP2008 actually improved!!
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Application: parameter estimation in EnKF.
The state vector is augmented with the parameters a,r,b

parameter estimation regression for a
. ; : 150 '
40 —a - data
_ r 100} regression
— | | true
30 ----- A Sgen pp— Tm—" - 50-
20" 0
-50
1) Se— o
-100-" -
. = -15 ' -
00 100 200 300 ‘q 0 =9 0 9 10

assimilation steps

Example with Lorenz model (simulation with noisy obs.,
courtesy: Miyoshi)

Left: estimation of parameters with LETKF from the error
covariance; Right: standard regression from observations 27



Application: Parameter Estimation in EnKF

« Example of carbon cycle data assimilation
— Surface CO, fluxes (CF): the forcing for atmospheric CO,
« State vector augmentation

— State vector is augmented by CF which is updated by error
covariance between the variables in the state vector

 Variable localization

— In a multivariate analysis of EnKF, error covariance is zeroed out
when there is no significant physical relationship between
variables, in order to reduce a sampling error

« Adaptive Multiplicative Inflation and Additive Inflation
— They help represent background uncertainty more accurately

 Vertical localization of satellite column data

— Averaging kernel is nearly uniform in the vertical, although the forcing
term (our ultimate estimate) is at the surface.

28
Kang et al. (2011, JGR)



Variable localization

» Analysis of surface CO, fluxes
assimilating atmospheric CO,
observations

— A case with a constant forcing
CFC UV T qPs

CF
C

U
1-way multivariate analysis vy
with variable localization =2 T

q
Ps

CFC UV T qPs
CF
C
U

Fully multivariate analysis & V
T

q

Kang et al. (2011, JGR) Ps

True fluxes

m
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""" ' s R
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CF estimation w/ varloc




Vertical localization also improves results

Pattern correlation between CF estimate and true state

1 CF_Pattern Correlation [LAND] B Suiis” <=sagansannas
0.9_ ‘ | | | | | | | | | | 200-—
0.8 1
0.7 1
0.6— £400_—
0.5 1 ;|
0.4_ ‘ ‘ | | | . | | & 600-—
oS o |
024 —— FULL~COL -------- S ol
O'g:—ﬁLOWLEVﬁﬁ |
_01 ‘ ‘ ' ‘ ' ‘ ‘ 00 02 {]4 06 08 10 12

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN
1997 1998

30



Surface carbon fluxes estimated with
different CO2 observations

A: True fluxes B: SFC+GOSAT+AIRS C: SFC+GOSAT D: SFC
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Tamara Singleton’s thesis:

Data Assimilation Experiments with a
Simple Coupled Ocean-Atmosphere Model

Questions explored:

-- Which one is more accurate: 4D-Var or EnKF?

-- Is it better to do an ocean reanalysis separately, or as a
single coupled system?

ECCO is a version of 4D-Var where both the initial state
and the surface fluxes are control variables. This allows
ECCO to have very long windows (decades) and estimate
the surface fluxes that give the best analysis.

--Is ECCO the best approach?

32



Simple Coupled Ocean-Atmosphere System

3 coupled Lorenz models: A slow “ocean”
component strongly coupled with a fast
“tropical atmosphere component”, in turn
weakly coupled with a fast “extratropical
atmosphere” (Peia and Kalnay, 2004).

Model Parameter Definitions

Variables Description Values

C,C,,C, Coupling c,c, =1
coefficient c, =0.08

T time scale 1=0.1

o, b,and r Lorenz 0=10,
parameters | b=8/3, and

r=28
k.K, Uncentering | k,=70

parameters k,=-11

Extratropical atmosphere

x,=0(y,—x,)—c,(x, +k)
)}e = rxe _ye _ere _Ce(yt +kl)
Z.e = xeye _bZe

Tropical atmosphere
x, =00y, —x)—c(X+k)—c,(x,+k)

y,=rx,—y,—xz,+cY +k,)+c,(y, +k)

z, =xy, —bz, + c.Z

Ocean
X=10Y - X)—c(x, +k,)
Y =TrX =1 —1XZ +c(y, + k,)
Z=1XY -1bhZ +c_z,

Model State: [xe,ye,ze,xt,yt,Z,,X,Y,Z]1

33



Simple Coupled Ocean-Atmosphere Model (Peiia and Kalnay, 2004)

<+“—>
Coupling strength

Tropical Atmosphere

Ocean is vacillating
between a “normal”

(lasts about 3-12 years)
and “El Nino” state Troplcal Ocean

34



Simple Coupled Ocean-Atmosphere Model (Peiia and Kalnay, 2004)

<+“—>
Coupling strength

Tropical Atmosphere

/ Ocean is vacillating

between a “normal

Extra-troplcal Atmosphere (iasts about 3-12 years) Troplcal Ocean
o and “El Nino” state

20

We do 4D-Var and EnKF with this simple coupled moéel



Simple Coupled Ocean-Atmosphere Model (Peiia and Kalnay, 2004)

Time series of the x-component

fast tropical
atmosphere

fast
l|pr"extratropical
A atmosphere

At=0.01

EO0 FO0 800 300 1000

100 200 300 400 eyl

We do 4D-Var and EnKF with this simple coupled moéel



Data Assimilation Experiment Design

Simple Coupled Ocean-Atmosphere Model (perfect model)

— Used to create the “true” trajectory

Observations
— Generated from the nature run plus “random errors” with 1.41 s.d.
— Every 8 time steps of a simulation

Perform coupled and uncoupled ocean data assimilations
with several EnKF, 4D-Var, and ECCO-4D-Var

Compute RMS errors of the difference between the analysis
and the true solution.

Lengthen assimilation windows, from 8 to 320 steps

Perform fully coupled data assimilation (ETKF, 4D-Var),
and just ocean assimilation (LETKF, 4D-Var and ECCO)

37



EnKF-Based Methods

Description of EnKF-based methods

Method

Assimilating

Observations

Special Features

ETKF
(Fully coupled)

Fast and slow
variables
simultaneously

Available at the end

of a window (analysis

time)

4D-ETKF
(Fully coupled)

Fast and slow
variables
simultaneously

Available throughout
an assimilation
window

4-dimensional

ETKF-QOL
(Fully coupled)

Fast and slow
variables
simultaneously

Available at analysis
time

Uses quasi-outer
loop to improve the
initial analysis mean

LETKF
(Separate Ocean)

Fast and slow
variables separately

Available at analysis
time

Subsystem
localization

4D-LETKF
(Separate Ocean)

Fast and slow
variables separately

Atmos: Available at
analysis time

Ocean: Available
throughout an
assimilation window

4-dimensional

Subsystem
localization

38




Variational Data Assimilation
Experiments:

Fully Coupled 4D-Var
Ocean only 4D-Var
ECCO-like Ocean 4D-Var

39



Fully coupled 4D-Var : the Cost Function

* In4D-Var, a cost function is minimized to produce an optimal analysis.

— The cost function measures the distance between the model with
respect to the observations and with respect to the background state.

« The analysis is obtained by minimizing the cost function given by

I(x,, )= %[xto = xgo ]T B;' [xto — x'fo J —Z[H(xti )-y? ]T Rt_il [H(@

| I

Jb - "background” cost function Jo- “observation” cost function

where the control variables are

X, (@’@2>X?’y?’zs’lgo’Yo’zo )>
v

Initial model state for extratropical atmos

Initial model state for ocean
40



4D-Var: Quasi-static Variational Data
Assimilation (QVA)

« For longer windows, multiple
minima are a problem for 4D-
Var minimization (Pires et al.,
1990).

« Also for longer assimilation
windows, non-Gaussian
perturbations of the
observation error and
background error ->in non-
quadratic cost functions

* Pires et al. (1996) proposed
the Quasi-static Variational

Data Assimilation (QVA)
approach.

Schematic of multiple minima and increasing window
size (Pires et al, 1996)

J(x):

T faited—

41
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Fully coupled 4D-Var and EnKF: shorter windows

e ETKF-QOL
LETKF

i 4D-LETKF

—— A D-\/ ar

= = =QObs. Error

Extratropics

56

24 40

72

80

8 16 32 48 64
assimilation window (time-steps)
ETKF-QOL
provides the ']
best analysis for
very short
windows

0.4
0 ~ T T T T

m—— ETKF-QOL
LETKF

=il 4D-LETKF

4. D-\/ ar

= = =Obs. Error

1.6
14 = = = = = = = = = = = = = = = = = = = = -
12 Tropics

—— ETKF-QOL

LETKF

1-01 —— 4D-LETKF

—— 4. D-\/ ar
0.8 = = =QObs. Error
0.6
0.4 -
0.2Mﬁ
0.0 + T T T

8 16 24 32 40 48 56 64 72 80
assimilation window (time-steps)

Ocean 4D-Var competes

with EnKF-based
methods for
longer windows

8

24 32 40

48 56

64 72 80

assimilation window (time-steps)



Fully coupled 4D-Var vs. EnKF: longer windows
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Fully coupled 4D-Var vs. EnKF summary

We developed fully coupled 4D-Var and EnKF systems for the
simple coupled ocean-atmosphere model

4D-Var needs tuning the amplitude of the background error
covariance B. EnKF needs tuning of inflation (or adaptive
inflation).

Lengthening the assimilation windows and applying QVA
improves the 4D-Var analysis because 4D-Var “forgets” B.
But longer windows are more expensive...

Fully coupled EnKF are optimal for short windows. Short
windows are less expensive...

The optimal configurations (short windows for EnKF and long
windows for 4D-Var) have similar accuracy.
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ECCO-like 4D-Var

« The Consortium for Estimating the Circulation and Climate
of the Ocean (ECCO) is a collaboration of a group of
scientists from the MIT, JPL, and the Scripps Institute of
Oceanography

« The main characteristic of ECCO is that they include
surface fluxes as control variables.

— This allows them to have exceedingly long assimilation windows in
4D-Var (e.g. 10 years or even 50 years).

— They used NCEP Reanalysis fluxes (Kalnay et al, 1996) as a first
guess.

« ECCO used 4D-Var to estimate the initial ocean state and
surface fluxes (Stammer et al., 2004; Kohl et al., 2007) in
a 50-year reanalysis
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Motivation: Comparison of Ocean Analyses

CERFACS 12722

3%

9 ECCO is the only of the anah‘/ses for which neither
the first nor second empirical eigenfunction
resemble the Pacific Decadal Oscillation Pattern

COMPONENT TIME SERIES

CERFACS
CGCECCO SODA
1 N W A AN
oY S s N AN — 1 \3:\\7,%:/ ST A
—1 T AZZEREIN PEL p_4 N Zn
- | ECCO
e A
1960 1970 1980 1990 2000

Carton and Santorelli (2008) plot of the First Empirical Orthogonal Eigenfunction of monthly heat content anomaly
in the latitude band 20N-60N Explained variance is shown on the title line. Lower panel shows the corresponding
component time series annually averaged along with the Pacific Decadal Oscillation Index of Mantua et46él. (1997)
in black.



ECCO-like 4D-Var: The Cost Function

The cost function to be minimized is given by

1 nre nre \— nre 1 - o - o
J= E[xo,f - x" ]T(BO' f ) 1[Xo,f — x> I+ EE[HXti Yy, ]T(Rtil)[thi B yti]
i=1

0,nfe __ B 0
antEy

where ) o o Z
Xy =( XorYorZ, 2,282

" _ Fluxes for last 8 time steps
Initial model state

T
b,nfe __ b b b S nfe,2 gnfe,2 gnfe2 nfe,n gnfe,n gnfe,n \
X =( X0, Y , ez, o2, 5 . (gron, gron, e |

Background state for the ocean

NCEP-like flux estimates for last 8 time steps
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ECCO-like 4D-Var: Experimental Design

Observations
— Same as EnKF and 4D-Var experiments

Forecast Model

— Slow subsystem of coupled model with fluxes changing after every 8
time steps

Data Assimilation: ECCO Ocean 4D-Var
— Control variables are initial ocean state and flux terms
— Prescribed background error covariance from NMC method
— Varied length of assimilation windows: 8 — 320 time steps

Comparison with: Ocean 4D-Var
— Control variables are initial ocean state
— Prescribed background error covariance from NMC method
— Varied length of assimilation windows: 8 — 320 time steps
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Comparison of ECCO-like & Ocean 4D-Var

QVA APPLIED OCEAN ONLY Obs. s.d. error = 1.41 for ocean

RMSE : Ocean State

. —a&— 4D-Var
—<—ECCO 4D-Var
- = = =0Obs. Error

4D-Var (ocean only) fails

N ECCO (ocean only) remains satisfactory
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Are the ECCO fluxes more accurate?

RMS Errors (Flux 3 Estimate)

6 | — o=— NCEP-like Flux
55 - Estimates
S /| —e— ECCO Flux Estimates
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4 _
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ECCO does not improve the flux estimates over the first guess



Answers to the Research Questions

Questions:
-- Which is more accurate: 4D-Var or EnKF?
Fully coupled EnKF (with short windows) and 4D-Var (with longer

windows) have about the same accuracy.
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Answers to the Research Questions

Questions:

-- Which is more accurate: 4D-Var or EnKF?

Fully coupled EnKF (with short windows) and 4D-Var (with longer
windows) have about the same accuracy.

-- Is it better to do the ocean reanalysis separately, or as a single
coupled system?

Both EnKF and 4D-Var are similar and most accurate when
coupled, but uncoupled (ocean only) reanalyses are fairly good.
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Answers to the Research Questions

Questions:

-- Which is more accurate: 4D-Var or EnKF?

Fully coupled EnKF (with short windows) and 4D-Var (with longer
windows) have about the same accuracy.

-- Is it better to do the ocean reanalysis separately, or as a single
coupled system?

Both EnKF and 4D-Var are similar and most accurate when
coupled, but uncoupled (ocean only) reanalyses are quite good.
-- Is ECCO 4D-Var with both the initial state and the surface
fluxes as control variables the best approach?

In our simple ocean model 4D-Var cannot remain accurate with
very long windows. Our ECCO reanalysis remained satisfactory
with very long windows but at the expense of less accurate

fluxes.
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Summarx

EnKF and 4D-Var are competitive, hybrid seems best
«  EnKF being tested in many countries and labs.

« |deas to further improve LETKF work well:
—  No-cost smoothing and “running in place” (K. and Yang, 2010, Penny)
—  Forecast sensitivity without adjoint model (Li and Kalnay, 2008)
—  Coarse resolution analysis without degradation (not shown) Yang et al
—  Model bias can be estimated and corrected (not shown) Danforth&K.

— Adaptive inflation (helps a lot) can be combined with estimation of obs.
errors (Miyoshi, 2010, Li et al. 2009).

—  Estimation of surface fluxes of carbon as evolving parameters seems
to work well if several improvements are implemented (Kang et al)
Coupled ocean-atmosphere analyses (Singleton, 2011)

—  4D-Var and EnKF work well in a simple fully coupled ocean-atm.
model. EnKF optimal for short windows, 4D-Var for long windows.

—  Optimal accuracy similar for both methods.

— ECCO (4D-Var with fluxes as control variables, very long windosw)
gives good analyses but not so good surface fluxes



