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Perfect model experimentsPerfect model experiments



• Introduction
– Physical-space Statistical Analysis System (PSAS)
– Local Ensemble Transform Kalman Filter (LETKF)
– NASA finite volume GCM (fvGCM)

• Experimental Design
– Assimilate simulated rawinsonde observations
– Comparison of PSAS and LETKF for perfect model

• Results
– Using small ensemble (40 members), LETKF can capture fvGCM 

background uncertainty
– LETKF obtains a superior analysis than PSAS

• Diagnostics
– LETKF better captures the errors of the day

• Conclusions and Future Plans
– Running experiments with real rawinsonde observations
– Preparing to assimilate AIRS retrievals
– Will assimilate AIRS radiances

• Challenges: Computer access and infrastructure

Outline



Introduction and 
Experimental Design

Hong Li



Background ~106-8 d.o.f.

Suppose we have a 6hr forecast (background) and new observationsSuppose we have a 6hr forecast (background) and new observations

The 3D-Var Analysis doesn’t know 
about the errors of the day

Observations ~105-7 d.o.f.

BR



Background ~106-8 d.o.f.

Errors of the day: they lie
on a low-dim attractor

With Ensemble Kalman Filtering we get perturbations pointingWith Ensemble Kalman Filtering we get perturbations pointing
to the directions of the to the directions of the ““errors of the dayerrors of the day””

3D-Var Analysis: doesn’t know 
about the errors of the day

Observations ~105-7 d.o.f.



Background ~106-8 d.o.f.

Errors of the day: they lie
on a low-dim attractor

Ensemble Kalman Filter Analysis:
correction computed in the low dim
ensemble space 

Ensemble Kalman Filtering is efficient because Ensemble Kalman Filtering is efficient because 
matrix operations are performed in the lowmatrix operations are performed in the low--dimensional dimensional 

space of the ensemble perturbationsspace of the ensemble perturbations

3D-Var Analysis: doesn’t know 
about the errors of the day

Observations ~105-7 d.o.f.



Attributes of PSAS

Until recently, the operational 3DVAR scheme 
used at NASA.
User-friendly infrastructure
Matrix computations are done in observation 
space, which has a lower dimension than the 
model state.



Local Ensemble Transform Kalman Filter 
(LETKF, Hunt 2006)

• Forecast step

• Analysis step

LETKF is an ensemble based 
Kalman Filter

Compute matrix inverse in 
space spanned by ensemble
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Local Ensemble Transform Kalman Filter

Perform Data Assimilation in local patch (3D-window)

The state estimate is updated at the 
central grid red dot

All observations (purple diamonds) 
within the local region are assimilated



Local Ensemble Transform Kalman Filter

Perform Data Assimilation in local patch (3D-window)

The state estimate is updated at the 
central grid red dot

All observations (purple diamonds) 
within the local region are assimilated



Local Ensemble Transform Kalman Filter

Perform Data Assimilation in local patch (3D-window)

The state estimate is updated at the 
central grid red dot

All observations (purple diamonds) 
within the local region are assimilated



Advantages of LETKF

Matrix computations are done in
a very low-dimensional space: both accurate and 
efficient, needs small ensemble.

The analysis is computed independently at each 
grid point, it is 100% parallel!

Very fast! 5 minutes in a 20 PC 

cluster with 40 ensemble members.

Model independent, and also do not
require adjoint of the model.

Can use full nonlinear observation operator, do 
not require its adjoint or Jacobian. 

It knows about the “errors of the day” through Pf.



Snapshot of background error 
(colored area)

and analysis increment 
(contour)

Errors of the Day

PSAS cannot
account for the 

errors of the day!!

PSAS



Errors of the Day
PSAS

LETKF

PSAS cannot
account for the 

errors of the day!!

LETKF does 
account for the 

errors of the day!!



NASA finite-volume GCM
The NASA finite-volume GCM(fvGCM) is a 
quasi-operational weather forecasting model.

It has 72 zonal, 46 meridional grid-points and 55 
levels.

It has highly accurate numerics but it is very 
different from other models (e.g., surface 
pressure is not a prognostic variable)



Data Assimilation on NASA fvGCM with 
LETKF

Experimental Design: 

Perfect model scenario: A “true” trajectory is generated by integrating 
the fvGCM model for several months. 

Simulated rawinsonde observations: The observations are the truth plus 
observational error as operational one. They are at rawinsonde 
locations.  We have two sets of observation types. 

1) zonal wind(u), meridional wind (v), and geopotential height (H)
2) zonal wind(u), meridional wind (v), temperature (T), and surface 

pressure(ps)



Real rawinsonde observation locations

00Z rawinsonde observation distribution

horizontal distribution relative vertical distribution



Data Assimilation on NASA fvGCM with 
LETKF

Experimental Design: 

Perfect model scenario: A “true” trajectory is generated by integrating 
the fvGCM model for several months. 

Simulated rawinsonde observations: The observations are the truth plus 
observational error as operational one. They are at rawinsonde 
locations.  We have two sets of observation types. 

1) zonal wind(u), meridional wind (v), and geopotential height (H)
2) zonal wind(u), meridional wind (v), temperature (T), and surface 

pressure(ps)

Local patch size : Change with latitude based on the observation 
coverage and physical distance between grid points.

Inflation scheme : Multiplicative inflation is used. 



Results

Junjie Liu



First set of observation experiments

• Observed variable: U, V, H

• Updated dynamical variable (eta coordinate):  U, 
V, scaled potential T, and Ps

• Plotted variable: U, T (related with scaled 
potential T, and pressure thickness (delp))



500hPa analysis RMS error (Global average)  

Zonal Wind Temperature
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500hPa analysis RMS error (Northern Hemisphere average)  
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500hPa analysis RMS error (Southern Hemisphere average)  
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Exploring large RMS analysis error on 06Z Feb12

Error difference 
between LETKF 
and PSAS most 
significant in this 

region

500 hPa temperature

RMS error difference between 
LETKF and PSAS analysis 
(color)

True atmospheric state 
(contour)



Background Error (color)
Analysis Increment (contour)

500 hPa temperature

Exploring large RMS analysis error on 06Z Feb12

PSAS LETKF

LETKF captures the errors of 
the day while PSAS cannot



Feb. average analysis RMS error at different levels (Global 
average)

Zonal Wind Temperature

PSAS

LETKF

PSAS

LETKF

RMS error RMS error



Time mean of zonal mean analysis RMS error (averaged 
over February) and dynamical state (contour)

Zonal Wind

RMS error difference between 
LETKF and PSAS

RMS error of LETKF



Zonal wind average analysis RMS error relative 
improvement

percentage improvement

Southern Hemisphere Northern Hemisphere



500hPa Feb. average RMS forecast (Global average)

Zonal Wind

LETKF retains its advantage over PSAS

throughout the entire 5 day period

Forecast lead time (day)

PSAS

LETKF



500hPa analysis RMS error (Global average)

Zonal Wind Geopotential Height

UVH

UVTPs

UVTPs+dp

UVH

UVTPs

UVTPs+dp

Analysis is further improved by assimilating operational data types T & Ps.

Updating pressure thickness further improves analysis.



Diagnostics

Elana Fertig



Structure of 6hr forecast ensemble spread and error variance
(averaged over February)

Structure of ensemble spread and variance agree.

Ensemble Spread is 
the average 
distance between 
the ensemble 
members and the 
mean forecast 
state (contour)

Ensemble Variance is 
the average 
distance between 
the ensemble 
members and the 
truth (color)

500 hPa Zonal Wind



Ratio of ensemble spread to ensemble variance 
(averaged over February)

In general, the ensemble spread over estimates the forecast error.

This is more prominent over data sparse regions.

500 hPa Zonal Wind



Vertical structure of ensemble spread and variance 
(averaged over February)

Structure of ensemble spread and variance agree.

Ensemble spread is larger than the ensemble variance.

Ratio of 
spread to variance

Ensemble Spread
(solid line)

Ensemble Variance
(dashed line)

Zonal Wind



Online Variance Inflation

Variance inflation is a tunable parameter. 
Can be estimated online as part of the data assimilation at low cost 

by augmenting state vector to include inflation parameter
(Miyoshi, 2005)
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d is the observation innovation

Update inflation parameter using normal Kalman Filter Equations.



E-dimension: are there enough ensemble members?

The E-dimension represents the number 

of uncertainty directions captured by the ensemble.

(Patil et al., 2001)
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is the jth eigenvalue of the background error covariance

Minimum value 1: all the uncertainty is in one direction

Maximum value k: the total uncertainty is in at least as many directions as 
ensemble members

(j)λ



Vertical Average of E-dimension (Feb. Average)

E-dimension is well below the number of ensemble members (40) everywhere.

Therefore, 40 ensemble members seem to be sufficient to capture dynamics.

Smaller E-dimension over midlatitude oceans.



Conclusions
For simulated rawinsonde observations, with operational 
possible ensemble member(40), LETKF is much better than
NASA PSAS analyses after the spin-up time. The percentage 
improvement is up to 50% in Southern Hemisphere, most 
areas is between 30% and 40%.

LETKF captures the error of the day, while PSAS cannot.

LETKF is an efficient and parallel method of data assimilation. 
5 minutes in a 20 PC cluster with 40 ensemble members.

Analysis is improved by assimilating T and Ps instead of H.

40 ensemble members can capture the directions of 
uncertainty.

Ensemble spread and variance structures agree.  These fields 
indicate the ability to further improve the LETKF analysis.



LETKF Implementation Challenges

• Very limited computational resources 
(shared cluster of 20 PC’s)

• fvGCM has a very high top and strong 
instabilities at the top

• Must tune parameters of scheme

• Adaptation of existing forward operators to our 
scheme



Future Plans

Eugenia Kalnay



Plans for this AIRS project

1) Real rawinsonde observations: u, v, T, q and SLP. We are starting 
now.

2) Add AIRS retrievals: T, q with high density coverage
3) Rawinsondes plus clear AIRS radiances 

(Compare with L. Strow forward model?)
4) AIRS data impact: 

* Estimate the impact of AIRS.
* Compare clear radiances with retrievals (less accurate but more 
coverage)

Funded by NASA/AIRS Project.



Miyoshi and Yamane (2006): LETKF at Miyoshi and Yamane (2006): LETKF at 
the Japan Earth Simulator, T159/L48the Japan Earth Simulator, T159/L48

With 80 ensemble members and 80 processors it takes only 4 minutes





Houtekamer (2006): 4D-Var and EnKF about the same!



Final Comments

1) LETKF is fast, parallel and mature

2) It is ready for testing in an operational testbed

3) It produces optimal initial perturbations for ensemble forecasting

4) It has a few tuning parameters (inflation, local patch size)

5) 4DLETKF assimilates satellite obs at their right time, like 4D-Var

6) It can be combined with Purser et al ideas for flow dependent 3D-
Var in the selection of data, which is now isotropic in LETKF
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