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Modern technological systems like GPS and Galileo, HF communications, and radar
ranging are affected by geomagnetic storms and can become unreliable during large
events. Geomagnetic storms are caused by large increases, often associated with
changes in the spatial distribution, of the high-latitude energy deposition from the
magnetosphere. The changes in energy Iinput have global consequences with
undesirable effects on technological systems and they cannot be adequately modeled at
the present time. For operational purposes these changes can only be specified and
perhaps modeled using data assimilation schemes .
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Why modeling the space environment?



Negative lonospheric Storm Tracks Region
of Low O/N,

Geospace Mission Definition Team Report



TEC above the CHAMP satellite altitude of 400 km on October 30, 2003
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ACTUAL SATCOM MESSAGES

SATCOM MESSAGE ERRORS
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Geomagnetic Storm of 31 March 2001
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How can one do a better modeling job?



THE SYSTEM
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Solar EUV Heating

We use a proxy (F10.7) for the solar flux.

F10.7 correlates well with the solar flux over long time scales but not
so well over short time scales.

The use of a proxy combined with uncertainties in heating
efficiencies combine to produce uncertainties of at least 50% in the
thermosphere heating.

Chemical heat transport complicates the picture even more.

Important for global dynamics and electrodynamics



THE SYSTEM
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lonospheric Electric Potential

IMF B,= -1.9nT B,= -7.9nT SW Vel=350.0 km/sec

06/18/95 6.7 UT

Weimer pattern



January 9-10, 1997

Northward E: IS radar at Sondrestrom, Greenland (66.99N, 50.95W)
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Particles and Fields

E-field patterns are statistical and consequently smooth

Conductivity calculations are based on statistical precipitation patterns
that are extrapolated from one orbit insitu measurements

=> Joule heating calculations based on statistical patterns have large
uncertainties:

50% globally
factor of ten locally

Important for global circulation, neutral composition, and electrodynamical
processes
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Millstone Hill ISR Measurements
Amglitude D‘F. 12—h Wave

140 % Temperature
""'E"‘“ 130 é‘
s E
— 120 F
m =
= 110F :
= 100¢
90 & . .
O 20
Amplitude (K)
Time of Max Temp
1"—1—0E I ) 11:I[r~|--n::|’tnt:-JI::I:n:;;;-p-' S E
werrreenne  variability E
150 . E
120 3
110 .
100 =
90E . . . . . ... , - .
— 4 — 2 O 2 4 6 8
EST (hr)

Figure 9. Altitude profile for climatologically mean temperature.
Variability (dashed line) is determined as standard deviation from
the climatological mean.

Goncharenko and Salah, JGR, 1998



Tides from below

Only propagating tides included in most models (active research)
No planetary waves included yet (active research)

Amplitudes and phases are uncertain by at least 50%

Very important for the D- and E-regions (80-150 km)

Important for the F-region (300-500 km) variability



THE SYSTEM

UV and EUV Radiation Particles and Fields
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Work on resolving these uncertainties in the energy inputs and sinks is
made more difficult by the large variability present in the system.



VERTICAL DRIFT (m/s)
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QuickTime™ and a
Cinepak decompressor
are needed to see this picture.



A Modeling Problem

 Variability in high-latitude convection and particle precipitation
produce large variability in Joule heating.

» Joule Heating changes the global neutral temperature structure,
neutral circulation, and neutral chemical composition.

* Neutral changes affect production, loss and transport of ionization
and have dramatic effects on global electron density and TEC
structures.

» Global Joule heating cannot be satisfactory modeled at this time
because both the convection E-field and the particle precipitation
patterns used in the models are statistical.

=> We can model generic storms but not specific ones

One possible solution is data assimilation.



Data Assimilation

Combine model and data based on their statistical errors
Challenges
Find the best model representation for state evolution in time
Obtain accurate statistical error estimations for model and data
Availability of quality data
- latency

- spatial coverage
- statistical errors
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Ensemble type Kalman Filter
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The classic Kalman filier equations can be written as:
rF(t4+1) =t + 1)z (t) + u(t) (1)

PPt 4+1) =d(t+ L;O)PO)®T (2 +1;1) + Q(1)

— A, A, e,
[ S =
T ™ e e e

ylt+1)=M(t)zF (t + 1) + v(t)
Kit+1) =Pt + 1)MT () [M(OPF (£ + M7 (t) + R()]?
r(t+ 1) =2 (t4+ 1)+ K+ 1)[p(t+ 1) — M(t)z" (t + 1)]
P(t+1)=(I—K(t+1)M(t))PF{t+1)

where,

x(t) is the best estimate of the state vector (of length n) at time £,

=¥t + 1) is the forecast value of the state vector at ¢ + 1. before new data
are assimilated,

i+ 1; 1) is the n by n transition matrix describing the evolution of the system
from time ¢ to time ¢ + 1,

u(t) is a vector of length n realization of the process noise, assumed gaussian
random with zero mean,

P(t) is the n by n covariance matrix at time ¢,

PF(t + 1) is the forecast value of the covariance matrix at time ¢ + 1, before
data is assimilated,

Q(t) is the diagonal n by n covariance matrix of the process noise, E{uu®)

y(t+ 1) is the measurement vector (of length m) at time ¢ + 1,

ML) is the m by n measurement matrix, relating the measured values to the
state vectar =¥ (¢ + 1),

v(f) is a vector realization (of length m) of the measurement noise, assumed
gaussian random with zero mean,

Kt 4+ 1) is the n by m Kalman gain matrix, and

R(t) is the m by m observation error covariance matrix, i.e. E(vvT).



Ensemble type Kalman Filter
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Global height-integrated O/N, ratio

QuickTime™ and a
decompressor
are needed to see this picture.



RMS Ditference [%] and CTIPe Activity Level

Global O/N2 ratio difference

RMS Difference and Truth Flle Forcing
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Activity Lewvel

Inferred vs true forcing for April 17, 2001 storm
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Ensemble type Kalman Filter
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Data Assimilation and the future

Ensemble Kalman filters offer the best hope for data assimilation for large
strongly forced dynamical systems.

One can do a "good" modeling job without knowing the forcing. Here it was
done based on assimilation in only one field (neutral chemical compaosition).

One could do assimilation in multiple fields and combine the results for much
more accurate forcing patterns.

One could derive forcing patterns based on EOFs. Successive orders of EOFs
can be determined from different assimilated fields using better data and
physical understanding. At this time we use the equivalent of only two or three
EOFs.

The accuracy of the forcing patterns can increase with the amount of available
data, physical understanding, and the sophistication of the schemes. This will
lead to better specification and forecast of the space environment.



Near Future Challenges

Operational Global TEC product (USTEC and GAIMS)

Run GCMs in semi-operational environment + data assimilation
Specify variability and its sources from reanalysis fields

Coupling with the lower atmosphere in one seamless model (IDEA)

Scintillation modeling and prediction nested grid models + data
assimilation

TEC response to storms

SED produced by SAPS

UV and EUV specification and effects

Importance of Te in NmF2 and TEC flare response
High-latitude forcing specification now from ACE

Solar wind structure influence on high-latitude forcing o
Solar wind-magnetosphere-ionosphere coupling + data assimilation



Proposed Data Assimilation Definition
(For Space Sciences)

Data assimilation is a method in which observations of the
current (and possibly, past) state of a system are combined with
the results from a mathematical simulation model to produce an
analysis, which is considered as 'the best' estimate of the current

state of the system.
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