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GOAL: Develop an analysis and prediction 
system of 3D cloud properties combined with 
the dynamical variables.

World-
Wide
Merged
Cloud 
Analysis

 

From Lin et al. (2005), courtesy Jenny Sun
0.1 mm hourly precipitation skill scores over 21 days

The AFWA Coupled Analysis and 
Prediction System (ACAPS) project



Outline

• Cloud-affected Satellite Radiances

– Retrieval of Cloud properties

– Representativeness Error

• Analysis Control Variable

– Inhomogeneous, flow dependent background errors

– Displacement Analysis



Cloud-affected Satellite 
Radiances



• Use total water Qt=Qwv+Qclw +Qrain instead of individual 
hydrometeors as a control variable

• Use a warm-rain microphysics scheme’s TL&AD for partitioning Qt
increment into Qwv, Qclw & Qrain. (Xiao et al., 2007)

• CRTM as cloudy radiance observation operator
• Minimization starts from a cloud-free background, this scenario 

can be realistic for less accurate cloud/precip. forecast in the real 
world

• Perfect background for other variables (T,Q etc.)
• Perfect observations (no noise added to the simulated Tbs) 
• 2 outer-loops

Towards Cloudy Radiance AssimilationAssimilation of simulated MW 
cloud-affected radiances in WRF 

3DVar



Column-Integrated cloud water Column-Integrated rain water Radar Reflectivity

Simulated Ch2 Tbs Simulated Ch17 Tbs Model = “truth” for 
SSMI/S radiance simulation

Only liquid hydrometeors 
considered

SSMIS radiances (ch 1~6, 
8~18) simulated at each grid-point 
using CRTM

Simulated SSMI/S radiances: 3DVar



Column-Integrated cloud water Column-Integrated rain water Column-Integrated water vapor

Towards Cloudy Radiance Assimilation

Analysis

Truth

Simulated SSMI/S radiances: 3DVar



1DVar Retrieval of Hydrometeors
1. Control variables: T, Q, Cloud liquid water, rain, cloud ice
2. Start from a mean cloud/rain profile background
3. Random noise to the simulated obs and T, Q background 

profiles

Signal for cloud-ice is weaker than for cloud-
water/rain

Cloud liquid water
Rain

Fail to retrieve
cloud ice for most cases

Towards Cloudy Radiance AssimilationSimulated SSMI/S radiances: 1DVar



Satellite Infrared Cloudy Radiances

Bi-dimensional histogram 
of the correlation between
linear and non-linear 
brightness temperature 
perturbations for AIRS

(Chevallier et al 2004) 
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Cloud Detection for IR sounders
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Cloud fractions Nk are ajusted variationally to fit observations:

Cloud Detection for IR sounders
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CloudSat Reflectivity

AIRS MMR Effective Cloud Fraction

Cloud Retrieval for IR sounders



Representativeness Error
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Towards Cloudy Radiance Assimilation

Simulated mismatch in resolution:

- Perfect observations (high resolution)
- Perfect Background (lower resolution)

Representativeness Error

Innovations

Background
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Towards Cloudy Radiance Assimilation

New interpolation scheme:

1. Automatic detection of sharp gradients  
2. New “proximity” for interpolation

Representativeness Error

Innovations

Background

New Innovations



  

Representativeness Error



Isolate innovations scale‐by-scale
while preserving physical-space localization



Reduction in representativeness error

The raw yo− yb (left) includes errors due to yo and yb
coming from completely different representations, that 
(hypothetically) have been reconciled by the foregoing 
wavelet-coefficient selection procedure.



Inhomogeneous, flow-
dependent background error 

covariances



•The normalization with Σ2 = diag B (left) yields a model with fewer artifacts (right) 
than does Σ = I (center) (as found by D&B earlier).
• In these plots x is unbalanced temperature anomaly in a 30-member ensemble computed 
by Dowell with horizontal resolution N = 450×350. 

Wavelet representation of 
Background Error Covariance Matrix

Background covariance can be efficiently modeled by assuming diagonality of the wavelet-
coefficient covariance matrix (Fisher & Andersson, Deckmyn & Berre).



New B (center, 7C30 wavelet) represents heterogeneity (left, 
ensemble), unlike homogeneous recursive filters (right).

• These PSOTs show the response of T to a 1±1K T observation at λ=−100°, φ=35°, η=0.28, estimated 
from an E = 30-member N = 351×451, 5-level dataset.

• Note that the wavelets represent some multi-scale anisotropic features such as the SW-NE structures 
over N Texas.



Wavelet B model (center) captures anisotropy (left), unlike recursive 
filters (right).

• Response to an observation at λ=−104°, φ=39°, η=0.28.

• The overall horizontal scale is an adjustable parameter len_scaling=0.9 (for RF), nb=7 (for wavelets) and 
alpha_corr_scale=200km (for ensemble), each of which has only been roughly calibrated.



Geographical mask



Standard
Deviations



Horizontal Lengthscales



Vertical Correlations



Displacement Analysis



Displacement, Field Alignment, 
Morphing Analysis, …

background 
error

displacements of 
coherent features

additive (residual) 
error

=> +



Smoothness

• Extend the control variable to include displacement “d “
• Add smoothness constraint Jd on d to avoid over-fitting

Tikhonov Constraints
 Field penalization JL2    = ||d||2

 Gradient penalization JGrad=||∇d||2

 Divergence penalization Jdiv   =||∇∙d||2

 Laplacian penalization Jlap   =||∆d||2

Bayesian Interpretation
 In the DA framework, Jd=xTD-1x where D is the covariance of displacement errors. 
 For a few specific cases, it is possible to derive equivalent Tikhonov 

regularizations from D and D-1 (Tarantola 2005). 
 For instance, exponential covariance is 1st order regularization (= field + gradient 

penalization)

Tikhonov Regularization constraints

Courtesy Yann MICHEL, Meteo-France

 

J = Jb + Jo yobs,X bg ,δx,δy( )+ Jd δx,δy( )



Displacement “single obs test”

Mind J(d) = Jo+Jd

 Jo is the observation of a displacement yd=[1,1] at the center
 Use of conjugate-gradient algorithm (quadratic constraints)
 Study the effect of Tikhonov regularizations on analyzed displacement

A numerical test

Courtesy Yann MICHEL, Meteo-France

L2 + Gradient L2 + Laplacian L2 + Divergence 
+ Laplacian



• penalty function       constrains
• maximum size of displacements (“barrier”)
• mean square size of displacements
• noisiness of displacement field (Laplacian)
• divergence of displacement field

• Implementation details
• use truncated spectral representation of displacements
• use nonlinear optimization software
• use adjoint to compute gradient of J

 

Jpen







Conclusions

• Cloud 3D structure is usually under-observed  rely on 

covariances (climatology or ensemble) to partition 

information and model to propagate in time

• For IR sounders, simple linear observation operator = better 

first guess to get closer to linear regime

• Observations and background usually at different scales: 

large representativeness error for cloudy radiances



Conclusions

• Need to improve the background error covariances for 

inhomogeneous, flow depend signal (GEN_BE package)

• Displacement analysis shows great potential for clouds

• Start with regional prototype, based on WRF model

• Evolve to global system, based on MPAS model�



Thank you for your attention…
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