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The Scalability Question

Scalability is the ability of a system, network, or process to handle a growing
amount of work in a capable manner or its ability to be enlarged to
accommodate that growth (wikipedia)
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ECMWF Scalability Programme

Future forecast configuration with the current code structure on the next
generation HPC will:

– not complete within operational schedule;
– cause unaffordable levels of electricity.

Achieving the highest performance per Watt of energy is critical.

To cope with the imminent technology challenge a step-change effort not an
increment is needed.

Doing nothing is not an option.
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ECMWF Scalability Programme

Implement a formal structure at ECMWF to coordinate science and software
activities across departments for efficient exa-scale computing/archiving.

Coordinate activities with Member States, European HPC facilities, research
centres, academia, vendors and international NWP centres.

Include and coordinate all components of the system, including data
assimilation, model, data pre- and post-processing and archiving.

The main objectives are:

– to develop the future IFS combining a flexible framework for scientific choices
to be made with maximum achievable parallelism,

– to prepare for expected future hardware technologies and their implications on
code structure ensuring efficiency and code readability,

– to develop environments/metrics for quantitative scalability assessment.

The success metrics are:

– efficiency gains in Watts (not FLOPS)
– efficiency gains in Gbyte/s and Pbyte
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ECMWF Scalability Programme
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Y. Trémolet OOPS



Evolution of Forecasting: Earth System Modelling

The expectations of society for better weather (and related) forecasts are
pushing us to account for more of the Earth system.

Science and models have progressed in many areas:

– Atmosphere,
– Land surface,
– Ocean,
– Sea ice,
– Atmospheric composition...

Each model is becoming more and more complex as science progresses.

The models are becoming more and more coupled to account for interactions
between all these aspects.
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IFS complexity
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It means growth of maintenance, development costs, and number of bugs.
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Earth System Data Assimilation

Data assimilation systems have been developped for each model.

Coupled data assimilation requires some common framework.
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Evolution of Variational Data Assimilation

4D-Var has been the main staple of data assimilation at ECMWF since 1997.

The algorithm has progressed to become more complex over the years:

– Number and types of observations,
– Minimisation and preconditioning,
– Observation bias correction,
– Sophisticated TL/AD models,
– Sophisticated observation operators,
– Wavelet Jb...

It is still being developped and improved (weak constraint).
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Evolution of Ensemble Data Assimilation

ECMWF uses an ensemble of 4D-Vars to estimate background error statistics.

Alternative: EnKF

– Approximation of a Kalman filter with covariances projected on ensemble
space, with issues related to localisation and inflation.

– A research implementation is maintained at ECMWF.

Alternative: 4D-En-Var

– Approximation of 4D-Var where time evolution of increments and covariances
are projected on ensemble space (with localization),

– Available in OOPS.

Alternative: EVIL...

Many options are open...
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Hybrid Data Assimilation

Today’s best data assimilation algorithms are hybrid.

– Ensemble DA system for computing background error covariances,
– Variational DA system to provide the high resolution (or best) analysis.

There are a number of options for combining them:

– Use flow dependent B in 4D-Var,
– Hybrid gain (combine increments).

Hybrid data assimilation systems are very complex.

– Each task is complex,
– Scheduling of jobs,
– Data flow,
– Comparing all options is almost impossible.
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Flexible

It should be easy to modify the system (new science, new functionality,
better scalability...)

A requirement is that a change to one aspect should not imply changes all
over the place.

– No code duplication: same modification in many places but also difficult to
find and leads to bugs.

– No global variables: a modification might have unforeseen consequences
anywhere.

– Think of it in terms of locality in the source code (as opposed to discontinous
code that jumps all over the place).

Y. Trémolet OOPS 11 / 37



Reliable

The code must run without crashing.

Additional aspects of reliablity are application dependent. For a system like
the IFS, the code must do what the user thinks it does:

– Many experiments are wasted because it is not always the case.
– The code must run with the user supplied value (namelist, xml) or abort.

A controlled abort with a clear error message is not a crash: it saves
computer and user time (our time).

Lots of testing:

– Internal consistency and correctness of results (this is not meteorological
evaluation),

– Mecanism to run all the tests easily,
– Tests run automatically on push to source repository.
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Modular

The weather forecasting problem can be broken into manageable pieces:

– Data assimilation (or ensemble prediction) can be described without knowing
the specifics of a model or observations.

– Minimisation algorithms can be written without knowing the details of the
matrices and vectors involved.

– Development of a dynamical core on a new model grid should not require
knowledge of the data assimilation algorithm.

Separation of concerns:

– All aspects exist but scientists focus on one aspect at a time.
– Different concepts should be treated in different parts of the code.

Unfortunately, in most cases, Fortran modules don’t lead to modular codes.
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Object-Oriented Programming

We need a very flexible, reliable, efficient, readable and modular code.

– Readability improves staff efficiency: it is as important as computational
efficiency (it’s just more difficult to measure).

– Modularity improves staff scalability: it is as important as computational
scalability (it’s just more difficult to measure).

This is not specific to the IFS: the techniques that have emerged in the
software industry to answer these needs are called generic and
object-oriented programming.

Object-oriented programming does not solve scientific problems in itself: it
provides a more powerful way to tell the computer what to do.
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OOPS Analysis and Design

What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

States :

– Input, output (raw or post-processed).
– Interpolate.
– Move forward in time (using the model).
– Copy, assign.

Observations :

– Input, output.
– Compute observation equivalent from a state (observation operator).
– Copy, assign.

We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.
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OOPS Analysis and Design

J(x) =
1
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Increments:

– Basic linear algebra operators,
– Evolve forward in time linearly and backwards with adjoint.
– Compute as difference between states, add to state.

Departures:

– Basic linear algebra operators,
– Compute as difference between observations, add to observations,
– Compute as linear variation in observation equivalent as a result of a variation

of the state (linearized observation operator).
– Output (for diagnostics).

Covariance matrices:

– Setup,
– Multiply by matrix (and possibly its inverse).
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OOPS Abstract Design
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The 4D-Var problem, and the algorithm to solve it, can be described with a
very limited number of entities:

– Vectors: x, y, g and δx.
– Covariances matrices: B, R (and eventually Q).
– Two operators and their linearised counterparts: M, M, MT , H, H, HT .

All data assimilation schemes manipulate the same limited number of entities.

For future (unknown) developments these entities should be easily available
and reusable.

We have not mentioned any details about how any of the operations are
performed, how data is stored or what the model represents.
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OOPS Abstract Design

OOPS is independent of the model and the physical system it represents.

Flexibility (including yet unknown future development) requires that this goes
both ways.

The Models do not know about the high level algorithm currently being run:

– All actions are driven by OOPS,
– All data, input and output, is passed by arguments.

Models interfaces must be general enough to cater for all cases, and detailed
enough to be able to perform the required actions.

OOPS currently stops at the level of the calls to the forecast model and
observation operators but the same principle could be applied at any level.
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OOPS Abstract Design

Applications Building Blocks Models

●States
●Observations
●Covariances
●Increments...

●Forecast
●4D-Var
●EDA
●EPS
●EnKF...

●Lorenz 95
●QG
●IFS
●NEMO
●Surface...

OOPS

The high levels Applications use abstract building blocks.

The Models implement the building blocks.

OOPS is independent of the Model being driven.
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OOPS Classes

OOPS requires a consistent set of classes that work together with predefined
interfaces:

– In model space:

1. Geometry
2. State
3. Increment
4. ModelConfiguration
5. LinearModel (Trajectory)

– In observation space:

6. ObsOperator
7. ObsAuxControl;
8. ObsAuxIncrement;
9. ObsVector

10. ObsOperatorTrajectory;

– To make the link:

11. Locations
12. ModelAtLocations

– Covariance matrices (if generic ones
are not used):

13. Model space (B and Q)
14. Observation space (R)
15. Localization (4D-Ens-Var)

Approximately 100 methods to be implemented (in Fortran or not).

Observation and model errors (biases) will be added.
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Model Trait Definition

Actual implementation Name used in OOPS
⇓ ⇓

struct QgTraits {
typedef qg:: QgGeometry Geometry;
typedef qg:: QgState State;
typedef qg:: QgModel ModelConfiguration;
typedef qg:: QgIncrement Increment;
typedef qg:: QgTLM LinearModel;
typedef oops:: NullModelAux ModelAuxControl;
typedef oops:: NullModelAux ModelAuxIncrement;

typedef qg:: QgObservation ObsOperator;
typedef qg:: ObsTrajQG ObsOperatorLinearizationTrajectory;
typedef oops:: NullObsAux ObsAuxControl;
typedef oops:: NullObsAux ObsAuxIncrement;
typedef qg:: ObsVecQG ObsVector;

typedef qg:: LocQG Locations;
typedef qg:: GomQG ModelAtLocations;

typedef qg:: LocalizationMatrixQG LocalizationMatrix;
};

The trait is used as a template argument <MODEL>: compile time polymorphism.
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Model Trait Definition

Actual implementation Name used in OOPS
⇓ ⇓

struct IfsTraits {
typedef ifs:: GeometryIFS Geometry;
typedef ifs:: StateIFS State;
typedef ifs:: ModelIFS ModelConfiguration;
typedef ifs:: IncrementIFS Increment;
typedef ifs:: LinearModelIFS LinearModel;
typedef oops:: NullModelAux ModelAuxControl;
typedef oops:: NullModelAux ModelAuxIncrement;

typedef ifs:: AllObs ObsOperator;
typedef ifs:: AllObsTraj ObsOperatorLinearizationTrajectory;
typedef oops:: NullObsAux ObsAuxControl;
typedef oops:: NullObsAux ObsAuxIncrement;
typedef ifs:: ObsVector ObsVector;

typedef ifs:: LocationsIFS Locations;
typedef ifs:: GomsIFS ModelAtLocations;

typedef ifs:: LocalizationMatrixIFS LocalizationMatrix;
};

The trait is used as a template argument <MODEL>: compile time polymorphism.
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Increment (L95)

class IncrementL95: public FieldL95 , public oops:: GeneralizedDepartures ,
private util:: ObjectCounter <IncrementL95 > {

public:
static const std:: string classname () {return "lorenz95 :: IncrementL95";}

/// Constructor , destructor
IncrementL95(const Resolution &, const oops:: Variables &, const util:: DateTime &);
IncrementL95(const IncrementL95 &, const Resolution &);
IncrementL95(const IncrementL95 &, const bool copy = true);
virtual ~IncrementL95 ();

/// Basic operators
void diff(const StateL95 &, const StateL95 &);
IncrementL95 & operator =(const IncrementL95 &);
IncrementL95 & operator +=( const IncrementL95 &);
IncrementL95 & operator -=( const IncrementL95 &);
IncrementL95 & operator *=( const double &);
void zero ();
void axpy(const double &, const IncrementL95 &, const bool check = true);
double dot_product_with(const IncrementL95 &) const;
void schur_product_with(const IncrementL95 &);
void timeUpdate(const util:: Duration &);

The compiler will check the types of the arguments during template
instantiation. Run-time polymorphism would require downcasting.
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Increment (L95)

class IncrementL95: public FieldL95 , public oops:: GeneralizedDepartures ,
private util:: ObjectCounter <IncrementL95 > {

public:

/// Interpolate to observation location
void interpolateTL(const LocsL95 &, GomL95 &) const;
void interpolateAD(const LocsL95 &, const GomL95 &);

/// Access to data ... Could we do without that?
FieldF90 ** getFields () {return FieldL95 :: toFortran ();}
const FieldF90 * const * getFields () const {return FieldL95 :: toFortran ();}

protected:
void initTL(const TLML95 &);
void initAD(const TLML95 &);
void stepTL(const TLML95 &, const ModelError &);
void stepAD(const TLML95 &, ModelError &);

void accumul(const double & zz, const StateL95 & xx);
};

States are similar but without the linear algebra.

States and Increments are used by OOPS directly.

OOPS also adds functionality by defining sub-classes (decorator).
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ModelState and ModelIncrement

template <typename MODEL > class ModelState: public MODEL ::State ,
private util:: ObjectCounter <ModelState <MODEL > >

{
typedef typename MODEL:: ModelAuxControl ModelAuxCtrl_;
typedef typename MODEL:: ModelConfiguration ModelConfig_;
typedef typename MODEL::State State_;

public:
ModelState(const ModelConfig_ &, const util:: Config &);
ModelState(const State_ &, const ModelConfig_ &);
~ModelState ();

/// Run a forecast
void forecast(const ModelAuxCtrl_ &, const util:: Duration &,

PostProcessor <State_ > &);

static const std:: string classname () {return "ModelState";}

private:
const ModelConfig_ & model_;

};

It is a templated class, the template argument is a model trait.

Note the reference to a ModelConfig object.
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ModelState and ModelIncrement

template <typename MODEL >

void ModelState <MODEL >:: forecast(const ModelAuxCtrl_ & mctl , const util:: Duration & len ,

PostProcessor <State_ > & post) {

const util:: DateTime end(validTime () + len);

LOG(Info) << "ModelState:forecast: Starting forecast , time is " << validTime ();

LOG(Info) << "Start NL" << *this;

post.initialize(validTime(), end , model_.timestep ());

this ->init(model_ );

post.process (*this);

while (validTime () < end) {

this ->step(model_ , mctl);

post.process (*this);

}

ASSERT(validTime () == end);

post.finalize ();

LOG(Info) << "ModelState:forecast: Finished forecast , time is " << validTime ();

LOG(Info) << "End NL" << *this;

}

forecast calls the PostProcessors at each time step (Observer pattern).

PostProcessors are very generic: I/O, FullPos, print information...

It is the responsibility of the PostProcessors to know when and what actions
are needed, not of the model.

The responsibility of the model (step) is to move the state in time, nothing
else.
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State-Observations Interactions

Two classes make the link between the model and observation spaces:

– Locations
– ModelAtLocations

The computation of observations equivalents is done in a PostProcessor:

1. Ask the Observations for a list of locations where there are observations (at
the current time)

2. Ask the State for the model values at these locations
3. Ask the ObsOperator to compute the observations equivalents given the model

values at observations locations.

Last step can be performed on the fly or in the finalize method (memory vs.
load balancing).

The traits ensure the arguments types are compatible. There is no magic
interpolation from any grid to any location in OOPS.

Preserves encapsulation (model grid not visible in observation operator).

But it’s up to each model implementation: OOPS does not prevent copying
the full State in the GOM...
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Cost Function Design

Naive approach:

– One object for each term of the cost function.
– Compute each term (or gradient) and add them together.
– Problem: The model is run several times (Jo , Jc , Jq)

Another naive approach:

– Run the model once and store the full 4D state.
– Compute each term (or gradient) and add them together.
– Problem: The full 4D state is too big (for us).

A feasible approach:

– Run the model once.
– Compute each term (or gradient) on the fly while the model is running.
– Add all the terms together.
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Cost Function Implementation

One class for each term (more flexible).

Call a method on each object on the fly while the model is running.

– Uses the PostProcessor structure already in place (observer pattern).
– Finalize each term and add the terms together at the end.
– Saving the model linearization trajectory is also the responsibility of a

PostProcessor.

Each formulation derives from an abstract CostFunction base class.

– Code duplication between strong and weak constraint 4D-Var: use in the same
derived class (weak constraint) or write the weak constraint 4D-Var as a sum
of strong constraint terms for each sub-window.

– It was decided to keep 3D-Var and 4D-Var for readability reasons.

The terms can be re-used (or not), 4D-Ens-Var was added in a few hours.

– OO is not magic and will not solve scientific questions by itself.
– Scientific questions (localization) remain but scientific work can start.
– Weeks of work would have been necessary in the IFS.
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OOPS Suites and Scripts

Like the Fortran code, the suite definitions and scripts have become more and
more difficult to maintain and develop.

Complexity will keep increasing in the future:

– Long overlapping 4D-Var windows,
– Hybrid data assimilation (EDA and DA coupled two-ways),
– Coupled ocean-atmosphere models...

The suite definitions and scripts define the application at the highest level.

– We should think of them as part of the “system”.

Three levels are mixed together in the suite definitions and scripts:

– The model (IFS, NEMO...), although the top level of OOPS is generic,
– The “scientifc” description of the cycling,
– The workflow “technical” specificity (SMS or ecflow).

The three levels could be, and should be, isolated from each other.
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Abstracting the workflow

dassim = oops4dvar(userConfig)
Bmatrix = mars.retrieve(Bconfig)

for date in daterange(fcycle , lcycle , step):
obs = mars.retrieve(date , obsConf)
background = mars.retrieve( fc(date -step , step) )

an = dassim.run(obs , background , Bmatrix)

fc = forecast.run(an)

mars.archive(an)
mars.archive(fc)

On its own, the cycling algorithm is relatively easy to describe.

And there is enough information to generate all the triggers!

Why are we writing them by hand?

– We are duplicating information.
– It is difficult to maintain and modify.
– The risk of bugs is increased.
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Prototype: PyOOPS

A prototype has been implemented in python to test the approach.

The system is organised around tasks whose input and outputs are metadata
objects.

The metadata objects are also used by the workflow to generate the triggers.

class ForecastModel(Task):

def constructor(self):
self.add_input(’init’)
self.add_output(’fc’)
self.add_variable(’length ’)
self.add_variable(’steps’)

def execute(self):
analysis = self.input(’init’)
forecast = MetaData( type = ’fc’,

date = analysis.valid_time ,
steps = self.variable(’steps’),
window_end = analysis.window_end )

""" code here that configures and executes the model """

self.set_output(’fc’, forecast )
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Prototype: 4D-Var Analysis Cycle

Tasks are used as
building blocks to
compose complex
structures

Analysis example

fetch_obs
<Retrieve>

bgfc
<GetBackground>

4dvar
<Analysis4dvar>

archive_fb
<Archive>

archive_bg
<Archive>

window

window

obs

bg

an

fb

<Analysis>

an

class Analysis(CompositeTask ):

def constructor(self):

self.add_input(’window ’)

self.add_output(’an’)

self.fetch_obs = self.add_task( Retrieve(’fetch_obs ’) )

self.bgfc = self.add_task( GetBackground(’bgfc’) )

self.an4dvar = self.add_task( Analysis4dvar(’4dvar’) )

self.archive_bg = self.add_task( Archive(’archive_bg ’) )

self.archive_fb = self.add_task( Archive(’archive_fb ’) )

def compose(self):

window = self.input(’window ’)

bg = self.bgfc(window=window)

obs = self.fetchobs(window=window)

(an ,fb) = self.an4dvar(bg=bg , obs=obs , window=window)

self.archive_bg(data=bg)

self.archive_fb(data=fb)

self.set_output(’an’, an)

...

datesetup = DateSetup(’datesetup ’)

analysis = Analysis(’analysis ’)

window = datesetup(date=’2013 -07 -02 T00 :00:00Z’)

an = analysis(window=window)
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Prototype with QG toy-model and ecFlow

class Analysis(CompositeTask ):

def compose(self):

window = self.input(’window ’)

bg = self.bgfc(window=window)

obs = self.fetchobs(window=window)

(an ,fb) = self.an4dvar(bg=bg , obs=obs ,

window=window)

self.archive_bg(data=bg)

self.archive_fb(data=fb)

self.set_output(’an’, an)

Note that GetBackground is a composite task as well!

The workflow (ecFlow) is abtracted from the suite definition.
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Abstracting the workflow

Scientists should think as if writing any algorithm.

Executing the (python) code generates the suite (and scripts).

– Each component can generate a single task or a family.
– The workflow is chosen when running the python program.
– A simple workflow can run the tasks on the fly (toy system on a laptop).

The workflow can be specialized for Operations to control when the
observations are retrieved and the analysis cycle started.

Everything else is the same: More can be shared between research and
operations.
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From IFS to OOPS

The main idea is to keep the computational parts of the existing code and
reuse them in a re-designed flexible structure.

This can be achieved by a top-down and bottom-up approach.

– From the top: Develop a new, modern, flexible structure (C++).
– From the bottom: Progressively create self-contained units of code (Fortran).
– Put the two together: Extract self-contained parts of the IFS and plug them

into OOPS.

From a Fortran point of view, this implies:

– No global variables,
– Control via interfaces (derived types passed by arguments).

This is done at high level in the code.

– It complements work on code optimisation done at lower level.
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OOPS Summary

Code components are independent:

– Components can easily be developed in parallel.
– Their complexity decreases: less bugs and easier testing and debuging.

Improved flexibility:

– Develop new data assimilation (and other) science.
– Explore and improve scalability.
– Changes in one application do not affect other applications.
– Ability to handle different models opens the door for coupled DA.

OOPS does not solve scientific problems in itself: it provides a more powerful
way to “tell the computer what to do”.

The OO layer developed for the simple models is not only a proof of concept:
the same code is re-used to drive the IFS (generic).
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OOPS Project Status

Work to adapt the IFS to OOPS is well under way.

NEMOVAR will be ported into OOPS.

OOPS will be available under an open source licence (Apache 2).
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