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Satellite data

I Many challenges with using satellite data for NWP or
NCP:

I Measures upwelling radiation

I Differing spatial resolution

I Non-linear response

I Uncertain processes + parameters



Figure: Ice habit versus temperature, saturation
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Figure: Scattering phase functions (solar) http:
//www.uni-leipzig.de/~strahlen/web/research/
Arctic/images/phasefunctionc.jpg

http://www.uni-leipzig.de/~strahlen/web/research/Arctic/images/phasefunctionc.jpg
http://www.uni-leipzig.de/~strahlen/web/research/Arctic/images/phasefunctionc.jpg
http://www.uni-leipzig.de/~strahlen/web/research/Arctic/images/phasefunctionc.jpg


(a) Ice as spheres (b) Hex columns (c) Dendrites

(d) Observation

Figure: Ice habits BT response calculated from Liu 2008
ScatDB and RTTOV 11.1



Drop-size distribution

I Drop-size distribution (DSD) important

I Entire DSD spread plays a role

I Two main assumptions:

I Exponential:

N(D) = n0 exp(−ΛD) (1)

I Gamma:

N(D) = n1Dν exp(−λD) (2)

I Also use mass/diameter relationship m = αDβ

I Gives three and four parameters, respectively



Figure: “Fit” of parameters to observations Benoit Chapon, Guy Delrieu, Marielle Gosset, Brice

Boudevillain, Variability of rain drop size distribution and its effect on the Z-R relationship: A case study for intense Mediterranean rainfall, Atmospheric Research, Volume 87, Is-

sue 1, January 2008, Pages 52-65, ISSN 0169-8095, http://dx.doi.org/10.1016/j.atmosres.2007.07.003. (http://www.sciencedirect.com/science/article/pii/S0169809507001226)



(a) Observation (b) DSD 1

(c) Observation (d) DSD 2



Figure: Rain mean diameter perturbation ranges



Figure: Histogram of rain mean diameter



Figure: Standard deviation of brightness temperature with per-
turbation in gamma parameters. On the order of 30 K stddev
with reasonable uncertainty!



What to do about this uncertainty?

I Quite different from traditional obs

I Obs over a distribution and spatial range

I Sweep uncertainty into obs. err. covariance??

I “Bias” is a generous term

I Need to extract the crucial information

I Requires statistical techniques

I Train from range of model, RTM realizations



Methodology

I Take HWRF model columns as X

I Use ψ, χ, P, T, RH, W, QCloud, QRain, QIce, QSnow,
QGraup, QHail at 12 levels = 504 variables

I Take CRTM/RTTOV simulated BT as Y = H(X )

I Use different DSD assumptions, emissivity
assumptions

I Use land-cleared columns/obs as samples of i.i.d.
variables

I Segment the data according to
clear/cloudy/precipitating automatically



Model covariance matrix (left = surface)
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Figure: Model covariance: left is surface



Figure: TRMM observation covariance: V/H order



Principal component analysis

I Collect samples of model columns, observations

I HWRF model columns as X , sim. TRMM as Y

I Assume clear/cloudy probabilities given by model

I Calculate X and Y covariance matrices Cxx , Cyy

I Compute the SVDs of cov. matrices
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Figure: % cumulative variance of first n model PCs. 100 PCs
contribute 95%, while 200 contribute 99.9%
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Methodology

I Standardize X and Y by µ, σ by level/channel

I Compute covariances Cxx and Cyy

I Provides useful, detailed correlations

I R is clearly non-diagonal; V/H assumption??

I Compute principal components (PC) w/ SVD

I Neglecting small PCs regularizes the problem



Extracting important relationships

I Problem: RTM overly-dependent on uncertain
parameters

I Neglecting small PCs in B, R regularizes

I ...but PCs are unrelated

I Idea: find best questions to ask model, obs

I As in PCA, can we neglect uncertain relationships?

I What would a “best” relationship look like?



Motivation

I Want a linear relationship with tight correlation

I i.e., find a vector a for the model, b for obs s.t. aT X ,
bT Y have the best correlation (scatter)

I Math: find a,b that maximize R2

J(a,b) =
cov(aTX ,bTY )2

var(aTX ) var(bTY )
(3)

I For J1(a,b) =
aTCxy b
aTCxx a and J2(a,b) =

aTCxy b
bTCyy b , find ∇J = 0

∇aJ(a,b) = 2Cxy bJ2(a,b)−Cxx aJ(a,b)
aTCxx a

∇bJ(a,b) = 2CT
xy aJ1(a,b)−Cyy bJ(a,b)

bTCyy b

(4)



I Solving for (a∗,b∗) = arg max J(a,b),

a∗ = 1
J1

C−1
xx Cxyb∗

b∗ = 1
J2

C−1
yy CT

xya∗
(5)

I For Ca = C−1
xx Cxy , Cb = C−1

yy CT
xy , substituting gives

λa∗ = CaCba∗

λb∗ = CbCab∗ (6)

i.e. (a∗,b∗) are the solution of two eigenvalue
problems.



I If Cxx or Cyy is not full-rank⇔ not invertible, use PCA

X ′ = S−1
x UT

x X
Y ′ = S−1

y UT
y Y (7)

for UxS2
x UT

x = Cxx and UyS2
y UT

y = Cyy .
I The solution is now

λ (a′)∗ = C ′xy

(
C ′xy

)T
(a′)∗

λ (b′)∗ =
(
C ′xy

)T C ′xy (b′)
∗ (8)

I i.e. for the single SVD of C ′xy , where

ASBT = C ′xy (9)

A are model canonical correlation vectors (CCVs), B are
the obs. CCVs, S2

ii gives the correlation (R) for CCV i .
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(a) Model CCV #1
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(b) Model CCV #2
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(c) Model CCV #3
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(d) BT CCV #4
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(a) BT CCV #1
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(b) BT CCV #2
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(c) BT CCV #3
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(d) BT CCV #4
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(a) CCV #1 (b) CCV #2

(c) CCV #3 (d) CCV #4



Benefits

I We now have a linear (i.e. fast) operator based on
regression (but can do much better w/ NL fit)

I Can go to full observation space (K) or remain in
CCV space (standardized)

I CCV space gives uncorrelated observations

I The first-few CCVs have physical interpretation

I Using only these extracts the essence of the data

I The data speaks for itself about the relative
importance and quality of relationships



1D-Var OSSE test

I Have CCV operator H (with improvements, see
paper)

I Use in an OSSE w/ CRTM hi-res observations

I Segmented regions with individual statistics

I Take 3 CCVs “obs” for each region

I Run 1D-Var with H, B, R, and mean background



Figure: Voronoi regions



  

Figure: Voronoi regions



(a) Truth (b) Analysis



(a) Truth (b) Analysis



(a) Truth (b) Analysis



(a) Truth (b) Analysis



Figure: TRMM/TMI Raw Ch. 1



Figure: TRMM/TMI Raw Ch. 7



Figure: TRMM/TMI Deconvolved Ch. 1



Figure: TRMM/TMI Deconvolved Ch. 7



Figure: CCV Observation 1, real obs



Figure: CCV Observation 2, real obs



Figure: Earl 2010 HWRF Track, no assimilation



Figure: Earl 2010 HWRF Track, CCV assimilation



Conclusions

I MW radiances are highly sensitive to uncertain
parameters

I Need to understand uncertainty, extract certainty

I Only then can MW be fully utilized for DA

I Canonical correlation vectors (CCVs) are maximally
linearly correlated vectors

I Have “physical” meaning, capture most important
relationships



Conclusions

I Assimilation results very encouraging at this stage

I Can bring in hydrometeors, humidity, along with
vertical velocity, hopefully ensuring consistency

I Lessons learned:

I Segmenting statistics likely beneficial for any DA
application

I Deconvolution is necessary for cross-channel
comparisons



Next steps

I Extend method to other satellites, frequencies

I Add as an operator to other DA systems

I Develop methods into a toolkit for users?

I Additional ideas? jsteward@jifresse.ucla.edu

jsteward@jifresse.ucla.edu


Questions / discussion


