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1. Editor's Comments:  

In order to increase the relevance of the paper for readers of the IEEE Trans. on Geoscience and 

Remote Sensing (TGRS), please add recent, related TGRS references (in particular from the 

years 2008 - 2011) where appropriate.  

2. Associate Editor Comments to the Author:  

The paper can be reconsidered for publication after minor revision as suggested by reviewer 1. 

3. Reviewer 1: 

a) The main limitation of this work is that all the geophysical mediums are assumed to be 

moderately sized spherical scatters. However, ice and snow particles are well known to be 

non-spherical and therefore their phase functions are not symmetric. The authors should 

provide some error characterization about their assumptions.  

Our answer: We realized that for a single particle using a spherical or non-spherical 

assumption will indeed yield significant brightness differences, and also realized that for 

certain non-spherical cases such as cylinders and spheroids, the associated scattering 

problems have been addressed (references can be listed if needed). The reason that we do not 

include the non-spherical cases in this work is that an intrinsic problem with non-spherical 

particle theory is that it will introduce more parameters, e.g., aspect ratios, orientation 

distributions, etc., into the problem. These parameters for non-spherical particles are difficult 

to actually measure, and if particles are randomly oriented in a medium the non-spherical and 

spherical cases usually give similar results in the polydispersed scattering case. We thus 

wanted to focus this modeling effort on the most basic of particle types and study the impact 

of other issues, such as polarization, refraction, discretization, integration accuracy, and fast 

Jacobian development. 

b) The authors also declared the UMRT has the rapid computation capability without giving 

evidence and comparison results with well-established models.  

Our answer: Our discussion of rapid computation capability directly follows that for 

DOTLRT in the Section IX of Voronovich et al [2004]. In UMRT, the number of operations 

required for calculation of both the brightness temperature profile and associated Jacobian for 

all stream angles (� angles) is ���, where � is the total number of layers. Since the same 

complexity applies we do not bother to belabor the discussion again.  

As the previous argument goes: (1) for a conventional DOE solution with a divided 

difference Jacobian, the number of operations required is �� , and (2) for an iterative 

perturbation solution the number of operations is ��. Normally, � ≫ �, therefore DOTLRT 

and UMRT are rapid models in this regard. 

c) Although the paper is well written and organized, I recommend it to be published only upon 

addressing the previous comments. I would also suggest that the number of equations be 

reduced significantly in the body of the paper as to make the publication reader-friendly. 
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Our response: we moved two parts: 1) the proof of positive definite matrix and 2) the 

solution procedure of the case using linear temperature profile to Appendix. At this moment, 

we tend to keep the both parts by considering the derivation integrity. However, these two 

parts can be removed if the reviewers and/or editors would like to.  

 

Modification List: 

1. In Abstract, the word “loosely” is replaced by “tenuously” 

2. In Abstract, the word “both” is added: “…by including both the Mie theory and the dense 

media radiative transfer theory (DMRT).” 

3. In Introduction, two paragraphs are added in order to response to Reviewer 1’s comments, 

starting with “During the development of UMRT…” to “…therefore DOTLRT and UMRT 

are rapid models in this regard.”  

4. In Section II,  

a) Eqn. (8) is removed, eqn. (9) is modified to reduce its length, and accordingly, some 

words are slightly modified to accommodate to the changes. 

b) In Sec. II (D), “…between the Mie and DMRT-QCA theories…” is changed by 

“…between the DMRT-QCA and Mie theories…” 

c) The subplot, Fig. 4(c), is corrected. 

5. In Section III, 

a) In sec. III (a), the proof of matrix �� � 	� being positive definite is move to Appendix I. 

The moved part begins with “In order to apply the stable matrix inversion…”, including 

eqns. (45-50). 

b) In sec. III (b), the whole solution procedure for linear case starting with “Balancing…”, 

including eqns. (58-67), is moved to Appendix II.   
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A Unified Microwave Radiative Transfer Model for

General Planar Stratified Media: Slab Formulation

Miao Tian, Student Member, IEEE and Albin J. Gasiewski, Fellow, IEEE

Abstract

A unified microwave radiative transfer model (UMRT) is presented for computing the thermal radiation

emitted from any geophysical medium comprised of planar layers of either densely or tenuously distributed,

moderately sized spherical scatterers. UMRT employs the discrete ordinate eigenanalysis method with layer-adding

to solve the differential radiative transfer equation for such multilayer structures. UMRT inherits the symmetrization

and analytical diagonalization and factorization techniques of symmetric and positive definite matrices from the

discrete ordinate tangent linear radiative transfer model (DOTLRT) presented in Voronovich et al. [1]. These

techniques ensure accuracy, numerical stability, and rapid computation for all matrix operations required for discrete

ordinate eigenanalysis along with a fast Jacobian calculation for radiance assimilation purposes. UMRT extends the

applicability of DOTLRT by including both the Mie theory and the dense media radiative transfer theory (DMRT).

Other nontrivial extensions within UMRT are: 1) the vertical and horizontal radiation intensities are coupled within

each layer by applying the reduced Mie or DMRT phase matrices, and 2) the physical temperature profile of a

layer is allowed to be linear in height. Symmetry properties of both the reduced Mie and DMRT phase matrices

are proved, and the associated scattering and absorption coefficients are compared and discussed. The UMRT

slab formulation is validated by imposing energy conservation and numerical results for some nominal cases are

produced and discussed.

Index Terms

Microwave remote sensing, dense media, layered media, DMRT, Mie, polarization, Jacobian, symmetric and

positive definite matrix.

I. INTRODUCTION

Currently, a major challenge in passive microwave remote sensing is the accurate and fast forward

numerical modeling of the electromagnetic scattering and emission properties of any geophysical media

M. Tian and A. J. Gasiewski are with the Center for Environmental Technology, Department of Electrical and Computer Engineering,
University of Colorado, Boulder, CO 80309-0425 USA (email: Miao.Tian@Colorado.Edu or Albin.Gasiewski@Colorado.Edu).
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consisting of soil, water, snow, ice, rain, cloud, fog, etc. Of importance in any such numerical model

is accuracy, numerical stability, computational speed, applicability to both dense and tenuous scattering

media, and the capability to produce a Jacobian for radiance assimilation purposes.

Three primary solution techniques to solve the differential radiative transfer equation (DRTE) for the four

Stokes parameters are: 1) the iterative method [2], [3], 2) the discrete ordinate eigenanalysis (DOE) method

[4]–[7], and 3) the Monte Carlo method [8], [9]. Among these, the iterative method is applicable to low

albedo cases or thin layers, and the Monte Carlo method lacks physical insight and convergence criteria.

The DOE method with layer-adding is widely used due to its applicability to layers of arbitrary albedo. In

the DOE method, the continuum of propagation directions is described by a finite number of quadrature

angles. The resulting system of equations is solved by eigenanalysis, and medium inhomogeneity is

accommodated by layer-adding.

The basic DOE solution for a multilayer structure under the planar stratified approximation follows the

formulation developed by Stamnes and Swanson [5]. In this work a matrix-operator method to solve the

DRTE as an eigenvalue problem and technique to reduce the order of the problem by a factor of two

were devised. In 1986, Nakajima and Tanaka [6] introduced the decomposition of a symmetric transition

matrix to provide a nearly-stable numerical solution for the DRTE. Matrix operator representations of

the reflection and transmission matrices in the multilayer stack were also introduced in their algorithm.

In 1988, the DOE model was summarized by Stamnes [7] for general use in planar multilayer multiple

scattering media.

Although the above models have been successful, there remained two major problems within the DOE

formulation: 1) analytic functions of matrices were required to be computed using Taylor series expansions.

For example, for a sufficiently small transition matrix argument ABh, one can calculate the cosine

hyperbolic operator of this argument as:

cosh

(√
ABh

)
= 1 +

AB

2!
h2 +

(
AB

)2
4!

h4 + · · · (1)

The above expansion generally requires too many terms for practical implementation. Accordingly, the

accuracy of the DOE solution is compromised by accumulated roundoff errors. 2) A second issue is

the well-known matrix inversion instability associated with implementation of the DOE method for high

albedo, high opacity and thick layers. These two attributes have historically limited the applicability of
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DOE method.

To circumvent these problems Voronovich et al. [1] developed the discrete ordinate tangent linear radia-

tive transfer model (DOTLRT) based on symmetrization of the DRTE and analytical diagonalization and

factorization of the resulting symmetric and positive definite matrices to provide inherent computational

stability and high computational efficiency for all matrix operations required by the DOE method. The core

DOTLRT procedure requires that both transition matrices A and B are symmetric and positive definite, in

which case any arbitrary analytic function g operated on the matrix product AB can be readily calculated.

Specifically, applying symmetry the matrix A can be represented as

A = M1Λ1M
T

1 (2)

where M1 is an orthogonal matrix consisting of eigenvectors of A having the following characteristics:

M1M
T

1 = M1M
−1
1 = I (3)

where (·)T denotes the matrix transpose and I is the identity matrix. In (2), Λ1 is a diagonal matrix of

associated eigenvalues. Since A is positive definite, the eigenvalues are positive (
{

Λ1

}
ii
> 0), which

guarantees that values of Λ
± 1

2

1 are all positive real. Similarly, another set of eigenvalue and eigenvector

matrices can be defined using the matrices B and (Λ1,M1) in (2) as

Λ
1
2

1M
T

1BM1Λ
1
2

1 = M2Λ2M
T

2 (4)

Using (2) and (4), the product of AB can be calculated as

AB =

(
M1Λ

1
2

1M2

)
Λ2

(
M1Λ

− 1
2

1 M2

)T
(5)

As a result,

g
(
AB

)
=

(
M1Λ

1
2

1M2

)
g
(

Λ2

)(
M1Λ

− 1
2

1 M2

)T
(6)

for any matrix function g. Moreover, by incorporating the derivative chain rule using first-order

perturbations of the eigenvalues and eigenvectors of a symmetric matrix, DOTLRT provides rapid
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numerical calculation of the associated Jacobians between the observed brightness temperature and all

relevant radiative parameters.

Although the DOTLRT algorithm provides a stable, fast and accurate solution to the DRTE, it was

originally developed for atmospheric simulation in which scattering hydrometeors are sparse (e.g., rain,

fog, cloud, and aerosols). It also is based on a single polarization using the Henyey-Greenstein (HG) phase

matrix approximation for a planar multilayer structure with non-refracting layers. Finally, it is based on

layers with constant physical temperature. These attributes have limited its application, especially for cases

of dense media (e.g., snow, ice, soil, etc.,) and thick atmospheric or surface layers with strong temperature

gradients.

In this paper, we present a new “unified microwave radiative transfer model” (UMRT) to extend

DOTLRT in all of the above areas. This model can be applied to widely varying types of media for

both forward radiative transfer and radiance assimilation purposes. Within UMRT we seamlessly partition

media layers into two categories, which are treated distinctively as follows: 1) sparse medium layers, in

which scatters are loosely distributed and independent scattering is dominant, and 2) dense medium layers,

in which scatters occupy significant volume fraction and volumetric scattering is dominant. For sparse

medium layers, the cross-polarization is considered by using the reduced Mie phase matrix. A proof of

the symmetry and positive definite nature of the Mie phase matrix is developed to ensure the applicability

of the stable matrix operation formulation of DOTLRT. Assuming independent scattering, UMRT sparse

medium layers are parametrized by sets of particle size distribution functions for each of the different

scatterer phases, for example, liquid spheres, ice spheres, etc. Calculations of the associated extinction,

scattering and absorption coefficients, and phase matrices are performed for each of these phases.

For dense medium layers, the dense media radiative transfer theory (DMRT) is applied within UMRT.

The DMRT theory with the quasi-crystalline approximation (QCA) was developed by Tsang and his

colleagues beginning in the early 1980s [8], [10]. In UMRT, a recent (2007) version of the DMRT-QCA

model by Tsang et al. [11] is used. This model uses a sticky particle assumption for moderately sized

(i.e., Mie-scale) spherical particles. In this model, the adhesion and aggregation of the sticky particles

are simulated by using sticky pair distribution functions based on the Percus-Yevick approximation. As

used within UMRT the reduced DMRT-QCA phase matrix is included and its symmetry properties are

identified. The associated absorption and scattering coefficients are calculated under the DMRT framework.

Other nontrivial extensions to DOTLRT incorporated within UMRT include extending the accuracy of
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the single-layer DRTE solution by permitting the temperature profile to be linear in height. UMRT also

inherits from DOTLRT the capability for rapid Jacobian calculation for a general medium model.

During the development of UMRT, we realized that for a single particle using a spherical or non-

spherical assumption will indeed yield significant brightness differences, and also realized that for

certain non-spherical cases such as cylinders and spheroids, the associated scattering problems have been

addressed [4]. The reason we do not include the non-spherical cases in this work is that an intrinsic problem

with non-spherical particle theory is that it will introduce more parameters, e.g., aspect ratios, orientation

distributions, etc., into the problem. However, these parameters for non-spherical particles are difficult to

actually measure, and if particles are randomly oriented in a medium the non-spherical and spherical cases

usually give similar results in the polydispersed scattering case. We thus wanted to focus this modeling

effort on the most basic particle type and study the impact of other issues, such as polarization, refraction,

discretization, integration accuracy, computation speed and fast Jacobian development.

Our discussion of rapid computation capability directly follows that for DOTLRT in the Section IX of

[1]. In UMRT, the number of operations required for calculation of both the brightness temperature profile

and associated Jacobian for all stream angles (M angles) is NM3, where N is the total number of layers.

Since the same complexity applies we do not bother to belabor the discussion again. As the previous

argument goes: 1) for a conventional DOE solution with a divided difference Jacobian, the number of

operations required is N2, and 2) for an iterative perturbation solution the number of operations is N3.

Normally, N �M , therefore DOTLRT and UMRT are rapid models in this regard.

This paper focuses on the details of the UMRT formulation for a multilayer stack with non-refractive

boundaries. This paper is organized as follows: Section II summarizes the equations for the scattering

and absorption coefficients and phase matrices based on the Mie theory and the DMRT-QCA theory.

Proof of the symmetry property of both the Mie and DMRT-QCA phase matrices is included along with a

comparison of the two phase matrices. Section III provides the theoretical framework for UMRT, including

the DRTE symmetrization, the DOE solution to a single medium layer by using the decomposition of

symmetric and positive definite matrix and under the linear profile assumption, and the upward recursive

DOE solution to the multilayer stack with non-refractive boundaries. Section IV provides a validation of

the UMRT solution by imposing energy conservation and also presents numerical results for some nominal

environmental scenarios. Section V provides a brief conclusion and discussion of related ongoing work.
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II. EXTINCTION, SCATTERING AND PHASE MATRICES

All numerical integrations in UMRT are computed by applying the Gauss-Legendre quadrature with the

Christoffel weights [12], although in principal any quadrature scheme can be implemented. It is nontrivial

to point out that UMRT employs the method derived by Yakimiw [12] to compute the Gauss-Legendre

nodes and weights. According to [13], the Yakimiw method reduces both the error growth in the nodes

and weights computations from the orders O(n) and O(n2) of the eigensystem method to O(1) and O(n),

respectively. Moreover, the Yakimiw method is suitable in terms of accuracy, reliability and speed for

computing the nodes and weights of very high order Gauss quadrature rules with n ∼ 104, which are

currently used for high resolution global atmospheric models.

A. Stokes Matrix: Transformation and Symmetry

In radiative transfer theory, the relationship between the incident and scattered Stokes vectors, I i (Θ)

and Is (Θ), respectively, for a single particle is depicted in the particle-based system of coordinates (Fig.

1(a)) and described by

Is (Θ) =
1

r2
L (Θ) · I i (Θ) (7)

where L (Θ) is the Stokes matrix for a single particle and has the following simplified form due to the

symmetry of spherical particles [4].

L (Θ) =


|f11|2 0 0 0

0 |f22|2 0 0

0 0 Re {f11f ∗22} −Im {f11f ∗22}

0 0 Im {f11f ∗22} Re {f11f ∗22}


(8)

where fαβ , α, β = 1 or 2 is the scattering amplitude and represents the scattering between polarizations.

Although the particle-based system has advantages in providing simple forms of the scattering

amplitudes for particles with symmetry, it is necessary for modeling stratified media to express the

scattering amplitudes in the principal coordinate system, defined by the scattering and incident angles

(θs, φs; θi, φi) [4], [14], [15], shown in Fig. 1(b).

The transformation between the two coordinate systems is given by
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Figure 1. (a) Particle-based coordinate system (from [4]) defined by scattering plane containing k̂i and k̂s, which are the incident and
scattered directions, respectively. The angle between k̂i and k̂s is Θ. (b) principal coordinate system defined by (θs, φs; θi, φi) and the
relationship between the two coordinate systems (from [15]).

L (θs, φs; θi, φi) = Lr (−i2)L (Θ)Lr (−i1) (9)

where Lr is the rotation matrix [14], [16]

Lr (i1,2) =


cos2i1,2 sin2i1,2 0.5sin2i1,2 0

sin2i1,2 cos2i1,2 −0.5sin2i1,2 0

−sin2i1,2 sin2i1,2 cos2i1,2 0

0 0 0 1


(10)

and the angles i1 and i2 are each spherical surface angles. From [15], the cosine of these two angles are

expressed as

cosi1 =
cosθssinθi − cosθisinθscos∆φ

sinΘ
(11)

cosi2 =
cosθisinθs − cosθssinθicos∆φ

sinΘ
(12)
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where

∆φ = φi − φs

sinΘ =
√

1− cos2Θ

cosΘ = cosθscosθi + sinθssinθicos∆φ

The spherical surface angles i1 and i2 can be computed by following equations without ambiguity:

i1,2 =

 2π − acos [cos(i1,2)] , π < ∆φ < 2π

acos [cos(i1,2)] , 0 < ∆φ < π
(13)

In general, L (θs, φs; θi, φi) is a full 4 × 4 matrix whereas L (Θ) has only six nonzero elements, four

of which are independent.

The analytical diagonalization and factorization technique used within UMRT requires symmetry of

the phase (and thus Stokes) matrix in the principal coordinate system under scattering path reversal (i.e.,

θs ↔ θi). To show this degree of symmetry, the following equalities are examined by applying the

coordinate transformation defined within (9-13):

L (θs, θi;4φ)
?
=
[
L (θi, θs;4φ)

]T
L (θs, π − θi;4φ)

?
=
[
L (θi, π − θs;4φ)

]T (14)

for which they would (respectively) follow that:

Lr (−i2)L (Θ)Lr (−i1)
?
=
[
Lr (−i1)L (Θ)Lr (−i2)

]T
Lr (−i1)L (Θ)Lr (−i2)

?
=
[
Lr (i2)L (Θ)Lr (i1)

]T (15)

Applying a Stokes matrix L (Θ) for a spherical particle with form as in (8) to (15) the equalities in

(14-15) hold for the diagonal and v − h elements, viz:

∆ =


0 0 ∆13 ∆14

0 0 ∆23 ∆24

∆31 ∆32 0 ∆34

∆41 ∆42 ∆43 0


(16)
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where ∆ , L (θs, θi;4φ) −
[
L (θi, θs;4φ)

]T
or L (θs, π − θi;4φ) −

[
L (θi, π − θs;4φ)

]T
and ∆ij

represents a non-zero matrix element. Eq. (16) shows that the Stokes matrix L (θs, θi;4φ) for spheres is

symmetric for the first two Stokes parameters. More specifically, if L (Θ) is calculated from either the

Mie or DMRT scattering theory, the difference matrix ∆ is found by numerical calculation for a wide

range of parameters and angles comprising nearly one million diverse cases to be:

∆ =


∼ 0 ∼ 0 ∼ 0 ∼ 0

∼ 0 ∼ 0 ∼ 0 ∼ 0

∼ 0 ∼ 0 ∼ 0 ∆34

∼ 0 ∼ 0 ∆43 ∼ 0


(17)

where the ′ ∼ 0′ entries are zero within standard IEEE numerical precision. While not an absolute proof

the above strongly suggests that both the Mie and DMRT Stokes matrices are symmetric for the first three

Stokes parameters.

Moreover, if the Stokes matrix L (Θ) has the simplified form of the Rayleigh Stokes matrix (i.e., for

electrically small particles):

L (Θ) =
3

2


cos2 Θ 0 0 0

0 1 0 0

0 0 cos Θ 0

0 0 0 cos Θ


(18)

Then it can be shown that ∆ = 0 for all entries. Hence, in this case of small particles L (θs, θi;4φ) is

symmetric for all four Stokes parameters.

B. Mie Phase Matrix

From [2], [4], the phase matrix is calculated by integrating the Stokes matrix with respect to an

appropriate particle size distribution function, n (D).

P (θs, θi;4φ) =

∫ ∞
0

L (θs, θi;4φ) · n (D) dD (19)

where D is the sphere diameter. The details of various n (D) functions relevant for atmospheric

hydrometeors can be found in [2].
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Due to the azimuthal symmetry of the planar-stratified media model employed in UMRT the phase

matrix can be further simplified by dimensional reduction to a reduced phase matrix [2]:

P
′

(θs, θi) ≡
∫ 2π

0

P (θs, θi;4φ) d (4φ) (20)

The reduced phase matrix is only a function of the incident angle θi and scattered angle θs. Due to the

azimuthal symmetry within the Mie and DMRT theories it can be shown that the reduced phase matrix

becomes:

P
′

(θs, θi)Mie/DMRT =


P11 P12 0 0

P21 P22 0 0

0 0 P33 P34

0 0 P43 P44


(21)

where it is seen that the 1st and 2nd Stokes parameters are decoupled from the 3rdand 4th.

The equations related to the Mie phase matrix are summarized by noting the scattering amplitudes from

the Mie theory [17], [18] are:

f11 (Θ) = −j
k

nmax∑
n=1

2n+ 1

n (n+ 1)
[anπn (cosΘ) + bnτn (cosΘ)]

f22 (Θ) = −j
k

nmax∑
n=1

2n+ 1

n (n+ 1)
[anτn (cosΘ) + bnπn (cosΘ)]

(22)

where k is the wavenumber in air, (an, bn) are the Mie scattering coefficients, and (πn, τn) are the angle-

dependent functions. The choice of maximum iteration number is commonly determined by nmax =

round
(
x+ 4x

1
3 + 2

)
, where x = ka is the size parameter, a is the sphere radius and the operation,

round (·) returns the closest integer less than (·). Accordingly, the Mie phase matrix elements for a

specific particle size distribution function n(D) are computed as:

P11 (Θ) =
∫∞
0
|f11 (Θ)|2 · n (D) dD

P22 (Θ) =
∫∞
0
|f22 (Θ)|2 · n (D) dD

P33 (Θ) =
∫∞
0

Re {f11 (Θ) · f ∗22 (Θ)} · n (D) dD

P44 (Θ) = P33 (Θ)
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P34 (Θ) = −
∫∞
0

Im {f11 (Θ) · f ∗22 (Θ)} · n (D) dD

P43 (Θ) = −P34 (Θ)
(23)

In computing the reduced Mie phase matrix elements it is usually convenient to integrate the above

expressions numerically with respect to the azimuthal angle as in (20). It is also convenient to define the

reduced normalized phase matrix [2]:

p
′
(θs, θi) ≡

P
′

(θs, θi)

κs
(24)

where
∫ π

0

p
′
(θs, θi) sin θsdθs = 1.

Within UMRT, for sparse media the extinction and scattering coefficients κe and κs are calculated based

on the Mie theory for polydispersed particles [2] while for dense media they are calculated differently

under the DMRT-QCA theory (c.f. ğ2.3). Using Mie theory the efficiencies ηe and ηs for monodispersed

spherical particles are computed as

ηe = 2
x2

nmax∑
n=1

(2n+ 1) Re (an + bn)

ηs = 2
x2

nmax∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

) (25)

Given a size distribution function n(D) the coefficients for polydispersed spherical particles are

computed as

κe = π
4

∫∞
0
ηe ·D2 · n (D) dD

κs = π
4

∫∞
0
ηs ·D2 · n (D) dD

(26)

As in [2] the upper limit of the above integrations are set to be 15 times the mean particle diameter

〈D〉. Since n (D) is typically an exponential function, integrand contributions typically diminish after a

few mean diameters.

C. DMRT-QCA Phase Matrix

UMRT employs the DMRT-QCA model outlined in [11], which simplifies the calculation of the DMRT-

QCA phase matrix relative to previous implementations. The effective propagation constant K and the

average multipole amplitudes X(M)
v and X

(N)
v are numerically calculated by solving the 2Nmax system
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of equations obtained using the Lorentz-Lorentz (L-L) law and the Ewald-Oseen extinction theorem. The

above quantities are subsequently used to calculate the DMRT-QCA Stokes matrix elements:

f11 (Θ) = −j
(1−R)

√
1

kKr

Nmax∑
n=1

2n+ 1

n (n+ 1)

×
[
anX

(N)
n πn (cosΘ) + bnX

(M)
n τn (cosΘ)

]
f22 (Θ) = −j

(1−R)

√
1

kKr

Nmax∑
n=1

2n+ 1

n (n+ 1)

×
[
anX

(N)
n τn (cosΘ) + bnX

(M)
n πn (cosΘ)

]
(27)

where k is the wavenumber in air, Kr = Re {K}, and R is a coefficient

R =
−jπno

k2 (k +Kr)

Nmax∑
n=1

(−1)n
[
bnX

(M)
n − anX(N)

n

]
(2n+ 1) (28)

The phase matrix elements are:

P11 (Θ) = |f11 (Θ)|2 q (Θ)

P22 (Θ) = |f22 (Θ)|2 q (Θ)

P33 (Θ) = P44 (Θ) = Re {f11 (Θ) · f ∗22 (Θ)} q (Θ)

P34 (Θ) = −P43 (Θ) = −Im {f11 (Θ) · f ∗22 (Θ)} q (Θ)

(29)

where the factor q (Θ) is obtained using the Percus-Yevick (PY) approximation in ( [11], eqs. 10-11). In

DMRT-QCA, the scattering and absorption coefficients are computed as follows:

κa = k
Kr

2π
k2|1−R|2no ·

Nmax∑
n=1

(2n+ 1)[
∣∣∣X(M)

n

∣∣∣2 ·(
Re {bn} − |bn|2

)
+
∣∣∣X(N)

n

∣∣∣2 (Re {an} − |an|2
)
]

κs = π
∫∞
0

[P11 (Θ) + P22 (Θ)] sinΘdΘ

κe = κa + κs

(30)

D. Results and Discussion

Comparisons of the scattering and absorption coefficients from the Mie theory and the DMRT-QCA

theory as functions of frequency for several typical conditions illustrate fundamental differences between

these distinct models (Tab. I and Fig. 2).
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Table I
CONDITIONS FOR CALCULATING SCATTERING AND ABSORPTION COEFFICIENTS FOR VARIOUS ICE PARTICLE DISTRIBUTIONS AND FOR

(1-2) DMRT-QCA THEORY, AND (3-6) MIE THEORY, FOR WHICH CASES 3-4 USE SPARSE SEKHON-SRIVASTAVA (SS) ICE SIZE
DISTRIBUTIONS FOR TWO NOMINAL PRECIPITATION RATES WHILE 5-6 USE DENSE EXPONENTIAL SIZE DISTRIBUTIONS FOR A FIXED

VOLUME FRACTION AND TWO PARTICLE DIAMETERS.

fv no (m−3 mm−1) 〈D〉 (mm)
1) DMRT-QCA 2.5× 10−1 1.74× 102 1.40
2) DMRT-QCA 2.5× 10−1 1.74× 102 1.40

3) Mie, SS (PR = 10 mm/hr) 7.33× 10−7 2.87× 102 1.23
4) Mie, SS (PR = 40 mm/hr) 1.07× 10−7 7.80× 101 2.30

5) Mie, Dense exponential 2.5× 10−1 2.07× 107 0.14
6) Mie, Dense exponential 2.5× 10−1 2.07× 103 1.40

For purposes of comparison cases 2-6 use the fixed lossy value of ice permittivity of εice = 3.15−j0.001,

while case 1 uses the frequency dependent value obtained from [19].

The differences in both κs and κa between the DMRT-QCA and Mie theories for identical ice volume

fractions are seen in cases 1-2 and 5-6 of Fig. 2(a-b), where DMRT-QCA generally predicts smaller

values for κs than the Mie theory for the same mean particle sizes and overall densities (cases 1-2 and 6).

However, since absorption is more closely related to the internal field amplitude and particle volume the

differences are smaller than for scattering. This effect is seen more clearly by considering cases 5-6, where

the mean particle size of the Mie simulation is varied by a factor of 10. For these cases the scattering

coefficient for Rayleigh-sized particles increases by 〈D〉6 /no, but there is less effect on the absorption

coefficient, especially for the frequencies less than 10 GHz. In Fig. 2(a), we also note that κs of Mie

theory saturates with larger particles at higher frequencies. This behavior suggests that the Mie scattering

coefficient has a weaker frequency dependence than that of DMRT-QCA. As can be expected, Fig. 2(a)

and 2(b) also show that the values of both κs and κa under Mie scattering for a dense distribution (cases

5-6) are much greater than their corresponding counterparts determined using the sparse Sekhon-Srivastava

(SS, [20]) distribution (cases 3-4). This difference is the result of scaling by the volume fraction, and

is inherent in Mie theory. However, the DMRT-QCA scattering coefficient depends non-linearly on fv,

and is accurately computable to volume fractions of at least ~20% [9]. Finally, in cases 1-2 it is noted

that use of the nominal value for the ice dielectric constant in computing the value of κs does not result

in obvious differences when compared with results using the ice dielectric constant values from Warren

[19], however, these two dielectric constant models do result in significant differences in the value of κa.

Accordingly, improved models of the dielectric constant of homogeneous water ice are suggested to be

of interest.
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(a) Scattering Coefficients

(b) Absorption Coefficients

Figure 2. (a) Scattering and (b) absorption coefficients for polydispersive ice particles computed using Mie and DMRT-QCA theories.

The behavior of reduced normalized Mie phase matrices are studied by assuming a rain case with the

following conditions: 1) Marshall-Palmer (MP) size distribution [21] with precipitation rate = 10 mm/hr

and 2) mean drop diameter 〈D〉 = 2 mm. The water dielectric constant is determined using the double

Debye model [22] at a temperature of 0 oC. As seen in Fig. 3(a-c), the reduced normalized Mie phase

matrices exhibit the expected symmetry for both vertical and horizontal polarizations. The plots further
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show that forward scattering relative to back- or side-scattering increases as frequency increases, gradually

becoming dominant above ~100 GHz as suggested by calculations of polydispersive asymmetry in [2].

Analogously, Fig. 4 shows the reduced normalized DMRT-QCA phase matrices computed for a dense

snowpack under the following conditions: 1) dielectric constant of ice of εice = 3.15−j0.001, 2) mean ice

diameter of 〈D〉 = 1.4 mm, 3) volume fraction fv = 25%, 4) stickiness parameter τ = 0.1. As shown, the

reduced DMRT-QCA phase matrices also exhibit the expected symmetry as found for the Mie case, and

the forward scattering also increases as frequency increases. Moreover, the DMRT-QCA phase matrices

present more forward scattering than that of the comparable Mie cases. However, it is noted that the

reduced normalized Mie phase matrix can be steadily and accurately computed over a wide frequency

range (in terms of mean size parameter 〈x〉) since there exist numerically stable algorithms [17], [18],

[23], [24] for frequencies up to at least ~1000 GHz and for practical hydrometer size distributions. In

contrast there is no conclusive study on the stability of the DMRT-QCA algorithm except for a brief

discussion of the maximum number Nmax of L-L equations required for convergence in [11]. From this

work Nmax is suggested to be determined by the relation Nmax= round(k 〈D〉)+1. This requirement for

Nmax was studied by computing the DMRT-QCA phase matrices at frequencies up to 1000 GHz. First, it

should be pointed out that in the three cases of Fig. 4 the errors caused by the choice of Nmax are small

(the value of Nmax is 4 at 100 GHz). As the frequency is extended to 300 GHz a value Nmax = 10 is

needed, thus increasing the computational burden. The L-L system of equations becomes ill-conditioned

at higher frequencies and a stable numerical solution is currently unavailable. Nonetheless, for microwave

remote sensing of snow and ice, DMRT-QCA is still readily computable for the most practical snow and

ice sensing frequencies (i.e., below ~100 GHz).

III. UMRT FRAMEWORK

A. DRTE Symmetrization

UMRT assumes a planar stratified medium structure and provides a solution for the brightness

temperature TB (θ, z) in upwelling (+) and downwelling (−) directions, accounting for polarization

coupling caused by the reduced phase matrix. The differential radiative transfer equation (DRTE) is

discretized over a set of quadrature angles θi, which are determined by the Gauss-Legendre nodes and

Christoffel weights:
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(a) 10 GHz

(b) 100 GHz

(c) 1000 GHz

Figure 3. Reduced normalized Mie phase matrices using an MP
rain distribution of 10 mm/hr and 32 quadrature angles.

(a) 10 GHz

(b) 30 GHz

(c) 100 GHz

Figure 4. Reduced normalized DMRT-QCA phase matrices for a
sticky Percus-Yevick pair distribution using 16 quadrature angles.
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µi
dT+
Bvi

dz
= −keT+

Bvi + [
M∑
j=1

γjP
++
vvijT

+
Bvj +

M∑
j=1

γjP
+−
vvijT

−
Bvj

+
M∑
j=1

γjP
++
vhijT

+
Bhj +

M∑
j=1

γjP
+−
vhijT

−
Bhj] + kaT (z)

(31)

−µi
dT−Bvi
dz

= −keT−Bvi + [
M∑
j=1

γjP
−+
vvijT

+
Bvj +

M∑
j=1

γjP
−−
vvijT

−
Bvj

+
M∑
j=1

γjP
−+
vhijT

+
Bhj +

M∑
j=1

γjP
−−
vhijT

−
Bhj] + kaT (z)

(32)

µi
dT+
Bhi

dz
= −keT+

Bhi + [
M∑
j=1

γjP
++
hvijT

+
Bvj +

M∑
j=1

γjP
+−
hvijT

−
Bvj

+
M∑
j=1

γjP
++
hhijT

+
Bhj +

M∑
j=1

γjP
+−
hhijT

−
Bhj] + kaT (z)

(33)

−µi
dT−Bvi
dz

= −keT−Bvi + [
M∑
j=1

γjP
−+
hvijT

+
Bvj +

M∑
j=1

γjP
−−
hvijT

−
Bvj

+
M∑
j=1

γjP
−+
hhijT

+
Bhj +

M∑
j=1

γjP
−−
hhijT

−
Bhj] + kaT (z)

(34)

where µi = cosθi, γj are the Christoffel weights, and M is the number of quadrature angles between zenith

and the horizon. Here, we choose M = 16 in this study, which is suitable for most passive remote sensing

purposes. All µi in the above equations are positive as a result of separating the brightness temperature

in the up- and down-welling directions. Following [1], and with reference to (21), the discretized reduced

phase matrix elements are defined as

P++
αβij = Pαβ (µi, µj) P+−

αβij = Pαβ (µi, −µj)

P−+αβij = Pαβ (−µi, µj) P−−αβij = Pαβ (−µi, −µj)
(35)

where α, β are either v (vertical) or h (horizontal) polarization. As shown in ğ2 the reduced Mie and

DMRT-QCA phase matrices are symmetric with respect to simultaneous permutation of angular indexes

and independent permutations of both up- and down-welling indexes:

P++
αβij = P++

αβji P−−αβij = P−−αβji P−+αβij = P+−
αβji

P++
αβij = P−−αβij P−+αβij = P+−

αβij

(36)

Page 19 of 36 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

18

Following [1], new variables for the up- and down-welling streams are introduced to make the DRTE

explicitly symmetric:

uvi =
√
µiγiT

+
Bvi uhi =

√
µiγiT

+
Bhi

vvi =
√
µiγiT

−
Bvi vhi =

√
µiγiT

−
Bhi

(37)

By rearranging (31-34) with the above new variables the following matrix form of discretized DRTE

equations is obtained:

d

dz


uv

uh

vv

vh


︸ ︷︷ ︸

4M×1

=


−A0 −C0 −B0 −D0

−E0 −G0 −F 0 −H0

B0 D0 A0 C0

F 0 H0 E0 G0


︸ ︷︷ ︸

4M×4M


uv

uh

vv

vh


+


f

f

−f

−f


︸ ︷︷ ︸

4M×1

=

−U −D

D U


︸ ︷︷ ︸

DOTLRT

u
v

+

 F

−F


(38)

where u ,

uv
uh

, v ,

vv
vh

, F ,

 f

f

, U ,

A0 C0

E0 G0

, and D ,

B0 D0

F 0 H0

. The sub-matrices for

vertical and horizontal polarization are defined as

A0ij = ke
µi
δij −

√
γiγj
µiµj

P++
vvij B0ij = −

√
γiγj
µiµj

P+−
vvij

C0ij = −
√

γiγj
µiµj

P++
vhij D0ij = −

√
γiγj
µiµj

P+−
vhij

E0ij = −
√

γiγj
µiµj

P++
hvij F0ij = −

√
γiγj
µiµj

P+−
hvij

G0ij = ke
µi
δij −

√
γiγj
µiµj

P++
hhij H0ij = −

√
γiγj
µiµj

P+−
hhij

(39)

The vector f represents thermal emission from the medium and is defined by fi =
√

γi
µi
kaTm, where

Tm , (To − γz) and γ is the temperature lapse rate.

Finally, the boundary conditions are

µiT
+
βi =

M∑
j=1

γjsβijT
−
Bβi +

(
µi −

M∑
j=1

γjsβji

)
Ts, z = 0

T−βi = Tcb, z = H

(40)
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where Tcb is the cosmic background temperature at the topmost atmospheric level z = H , Ts is the surface

background temperature, and in the case of a specular surface the surface bistatic function sij is obtained

using the Fresnel reflection coefficient Ri as

sβij = µi |Rβi|2 δij, γj = 1 (41)

For coupled vertical-horizontal radiation streams all sub-matrices in U and D are defined from specific

reduced phase matrices, which have been shown to be symmetric with respect to incident and scattering

angles. Thus both matrices U and D are symmetric along with the following two new matrices: A , U+D

and B , U −D.

B. Solution for A Single Layer

UMRT assumes a planar-stratified stack of reciprocal homogenous layers in which the medium

properties are assumed constant and the source vector F is at most linear in height (Fig. 5(a)). In addition

to the extension to multiple coupled Stokes parameters, the assumption of the kinetic temperature of a

layer being linear is another fundamental difference between UMRT and DOTLRT.

Figure 5. (a) Matrix representation of the reflection and transmission matrix operators, and (b) self-radiation stream vectors for a single
layer.

Owing to thermal emission, the layer will generate self-radiation streams in the up- (u) and down-

(v) welling directions at its top and bottom surfaces, respectively. Such streams denoted by the subscript

∗ (Fig. 5(b)). To solve for them it is required to compute the reflection and transmission matrices (r

and t) which describe the volumetric scattering inside the layer. The layer is assumed to be embedded

within a homogeneous dielectric environment of permittivity equal to the effective permittivity of the

layer. As such, there is no surface Fresnel reflection at the interfaces to this neutral dielectric background

environment. Assuming an external radiation field uinc incident from the bottom of the layer (Fig. 5(a)),

we define the reflection and transmission matrices implicitly by
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u = t uinc at z = h

v = r uinc at z = 0
(42)

These matrices can be found using the homogeneous solution to the DRTE, written as:

u (z)

v (z)

 =
1

2

 1 1

−1 1

 c −sA

−B s c
T

1 −1

1 1

u (0)

v (0)

 (43)

Applying (42) we have

t uinc
0

 =
1

2

 c−B s− sA+ c
T −c+B s− sA+ c

T

−c−B s+ sA+ c
T

c+B s+ sA+ c
T

 uinc
r uinc

 (44)

where the matrices c and s are defined as

c , cosh(
√
ABh)

s , sinh(
√
ABh) · (AB)−

1
2

(45)

and are evaluated at z = h. From (44) we obtain

t = 2
(
c+B s+ sA+ c

T
)−1

, 2Q
−1

r = Q
−1 (

c+B s− sA− cT
) (46)

It is noted that the above matrices exhibit the symmetry necessary as a result of reciprocity.

r = r
T

and t = t
T

(47)

Although the above procedure is analytically correct, the direct inversion of the matrix Q will usually

fail numerically when the medium layer is either highly opaque or thick or both. The problem is that the

matrix functions c and s are functions of cosh(x) and sinh(x), respectively. Such hyperbolic functions

contain fast growing exponentials which quickly lead to ill-conditioning of Q. To circumvent this problem

DOTLRT uses equations (2-6) along with analytical diagonalization and factorization of the constituent

symmetric and positive definite matrices that comprise Q to represent it as

Q = M1a ζ btM
T

1 (48)
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Thus, the matrices r and t are readily computed as follows:

t = 2M1b
−1
t ζ

−1
a
−1
M

T

1

r = t−M1b
−1
t brM

T

1

(49)

In (48-49), the matrix M1 is the orthogonal matrix consisting of the column eigenvectors of the matrix

A. The matrices bt, br and a are transitional matrix functions involving tanh(x) and coth(x), where x

is a function of the layer thickness. Since both tanh(x) and coth(x) are bounded to 1 as x → ∞ the

matrices bt, br and a tend to finite limits. The matrix ζ is a diagonal matrix function containing terms in

sinh(x). Since ζ is diagonal, it is always precisely invertible. Details of the matrices bt, br, a, and ζ are

well defined in ( [1], eqs. 51-56).

For a layer with constant temperature profile (i.e., γ = 0) DOTLRT computes the self-radiation stream

vectors as follows

u∗ (0) = v∗ (0) =
(
I − r − t

)
uinh

u∗ (0) = u∗ (h)

v∗ (0) = v∗ (h)

(50)

where I − r − t can be interpreted as an effective emissivity matrix for the layer. The inhomogeneous

solution of the DRTE (38) is

 uinh

vinh

 =

 (U +D
)−1

F(
U +D

)−1
F

 =

 A
−1
F

A
−1
F

 (51)

Extending the above to the case of a linear temperature profile the inhomogeneous DRTE is solved

by assuming uinh (z) = uo − u1z, vinh (z) = vo − v1z, Fi (z) ,
√

γi
µi
ka (To − γz) , Foi − γTiz, where

Foi =
√

γi
µi
kaTo and γTi =

√
γi
µi
kaγ. Substituting these quantities into the DRTE yields

 −u1
−v1

 =

−U −D

D U

 uo − u1z

vo − v1z


+

 F o − γT z

−F o + γT z

 (52)

Balancing (52) and applying block matrix inversion [25] along with some simple linear algebra, we
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obtain

 uinh (z)

vinh (z)

 =

 A
−1
F (z) +B

−1
A
−1
γT

A
−1
F (z)−B

−1
A
−1
γT

 (53)

Note that if γ = 0 (77) is reduced to (51). The connection between the inhomogeneous solutions, uinh

and vinh, and the upwelling self-radiation stream vector u∗ is illustrated in Fig. 6 where two artificial

external radiation stream vectors vinh (h) incident on the top of the layer from above and uinh (0) incident

on the bottom of the layer from below are assumed. The two incident stream vectors will correspondingly

produce two additional stream vectors at the top of the layer equal to r vinh (h) and t uinh (0), illustrated

in Fig. 6(b).

Figure 6. Calculation of the upwelling self-radiation for a single layer with linear temperature profile.

Adding all of the stream components in Fig. 6(b) results in the following expression for the upwelling

inhomogeneous solution at the top of the layer in terms of r and t:

uinh (h) = u∗ (h) + r vinh (h) + tuinh (0) (54)

Rearranging (54) the upwelling self-radiation stream vector can be expressed as

u∗ (h) = uinh (h)− r vinh (h)− tuinh (0) (55)

Similarly, the downwelling self-radiated stream vector is

v∗ (0) = vinh (0)− r uinh (0)− tvinh (h) (56)

The above solutions (55-56) extend DOTLRT to make UMRT a more widely applicable polarimetric

(three Stokes parameter) and level-centric (rather than layer-centric) discrete-ordinate radiative transfer

solution .
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C. Solution for a Multilayer Stack

Using the single-layer solution a procedure for solving for the total radiated and reflected stream vectors

for a multilayer stack with non-refracting boundaries can be developed. Once the matrices r and t for all

individual layers and the vectors u∗ and v∗ at all levels are obtained, the overall radiative characteristics

of the stack, R
(n+1)

and U
(n+1)

∗ can be calculated by upward recursion. Since the vectors u∗ and v∗ are

fundamentally different for a layer with linear temperature profile versus a constant-temperature layer the

upward recursive formulae of DOTLRT are modified as follows

U
(n+1)

∗ = u
(n+1)
∗ + t

(n+1)
(
I −R

(n)
r
(n+1)

)−1
·
(
U

(n)

∗ +R
(n)
v
(n+1)
∗

) (57)

R
(n+1)

= r
(n+1)

+ t
(n+1)

(
I −R

(n)
r
(n+1)

)−1
R

(n)
t
(n+1)

(58)

where the uppercase characters denote characteristics of a stack in order to distinguish them with their

counterparts for a single layer.

The boundary conditions for the stack are:

U
(0)

∗ = F
(0)

and R
(0)

= S (59)

where F
(0)

denotes the upwelling stream vector from the bounding lower half space and S is defined by

the surface bistatic scattering function of the lower half space

Sβij =

√
γiγj
µiµj

sβij (60)

It should be noted point that all of the above stream vectors (U∗, u∗, v∗), reflection matrices (R, r)

and transmission matrices (t) are calculated assuming that each single layer or stack has non-refractive

boundaries. For this simple case the UMRT Jacobian procedure is analogous to that of DOTLRT except

for two aspects: 1) the phase matrix is extended in polarization, including the exact Mie and DMRT-QCA

phase matrices so that the associated Jacobian calculations must correspondingly be extended, and 2)

the physical temperature profile of a layer is extended from being constant to linear, thus the UMRT

Jacobian includes the temperature lapse rate and the difference in the up- and down-welling self-radiation
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streams needs to be considered. Further, if the stack contains refractive boundaries then the above recursive

equations need to be correspondingly modified, along with the UMRT Jacobian procedure. The details of

such a refractive extension are provided in [26].

IV. NUMERICAL EXAMPLES

The calculations of self-radiation streams and reflection and transmission matrices for a single layer

are validated by imposing energy conservation. The validation scheme is depicted in Fig. 7. In Fig. 7, we

assume a single layer with constant physical temperature To is embedded in a homogeneous background

environment whose physical temperature is also To. This scenario results in down- and up-welling radiation

streams vinc and uinc impinging on the layer. From thermodynamic equilibrium the brightness temperature

of the sum of u∗ + r vinc + tuinc must equal to To at all observation angles. As recorded in Tab. II, the

UMRT model was tested for this condition using four reduced phase matrices (HG, Rayleigh, Mie, and

DMRT-QCA), and two nominal materials (water and dry snow). For the first three reduced phase matrices,

the validation was performed up to 1000 GHz in frequency, employing a single rain layer model with 1

km thickness and under the Marshall-Palmer (MP) size distribution with precipitation = 10 mm/hr. For

the reduced DMRT-QCA phase matrix, validation was performed at frequencies up to 100 GHz using a

1 m thick dry snow layer with the following parameters: fv = 0.25, τ = 0.1, and 〈D〉 = 1.4 mm. The

error between the brightness temperature computed by UMRT and To at the ith angle is defined as

εmax (θi) =

∣∣∣∣∣∣
(
u∗ + rvinc + tuinc

)
i√

µiγi
− To

∣∣∣∣∣∣ (61)

As shown in Tab. II, the maximum absolute error of the various phase matrix cases is of order 10−10 to

10−13 K over sixteen discrete observation angles. This error can be ascribed to roundoff error associated

with IEEE standard arithmetic.
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Figure 7. The UMRT validation scheme of energy conservation

Table II
VALIDATION OF FOUR PHASE MATRICES USING ENERGY CONSERVATION.

Test Conditions Max. Error (K)
HG, Water, Frequencies up to 103 GHz ~10−13

Rayleigh, Water, Frequencies up to 103 GHz ~10−13

Mie, Water, Frequencies up to 103 GHz ~10−13

DMRT, Dry Snow, Frequencies up to 102 GHz ~10−10

Next, a single rain layer is used as an example to compare the brightness temperatures computed

by UMRT assuming each of three reduced phase matrices: Rayleigh, HG, and Mie. Both constant and

linear temperature profiles were tested for this layer. The MP size distribution is assumed and the water

permittivity is determined by Meissner and Wentz’s double Debye expression [22]. The test details are

provided in Tab. III.

Table III
SINGLE RAIN LAYER UNDER THE MARSHALL-PALMER (MP) SIZE DISTRIBUTION.

Layer Temperature (K) Rain Rate 〈D〉 (mm) Frequency (GHz)
Water, 1 km 300 10 mm/hr 0.40 10.7, 18.6, 37.0
Water, 1 km 300 to 273 10 mm/hr 0.40 10.7, 18.6, 37.0

For the layer with a constant 300 K temperature the emitted brightness temperatures were computed

for the three phase matrices at three distinct frequencies (10.7, 18.6 and 37.0 GHz), and categorized by

direction (up- and down-welling) and polarization (horizontal and vertical) (see Fig. 8). From Fig. 8,

we see that at the two low frequencies (10.7 and 18.6 GHz) the brightness temperatures for the three

phase matrices are nearly identical while at the high frequency (37.0 GHz), the Rayleigh and HG cases

are slightly colder (~2 K) than that of the Mie case. We also note that all three phase matrices yield

identical upwelling and downwelling radiation streams, which is expected for a uniform temperature
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profile. We also see that in both Rayleigh and HG, the horizontal brightness temperatures equal their

vertical counterparts, as expected from the decoupled polarization characteristic of both Rayleigh and

HG phase matrices. However, the Mie phase matrix shows clear differences between the horizontal and

vertical brightness temperatures of ~6 K, particularly at the frequencies approaching the transition from

the Rayleigh to the Mie region.

For the layer with a linear temperature profile the brightness temperatures are plotted in Fig. 9.

Comparing Figs. 8 and 9 there is similar general behavior in both cases. However, the downwelling

radiation streams are considerably greater than their corresponding upwelling counterparts, which is what

is expected given the linear temperature profile.

Figure 8. Brightness temperatures for a rain layer with a constant temperature profile: (a) horizontal-upwelling, (b) horizontal-downwelling,
(c) vertical-upwelling, and (d) vertical-downwelling. Blue, red and green plots are made using the Mie, Rayleigh, and HG phase matrices,
respectively.
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Figure 9. Brightness temperatures for a rain layer with a linear temperature profile: (a) horizontal-upwelling, (b) horizontal-downwelling,
(c) vertical-upwelling, and (d) vertical-downwelling. Blue, red and green plots are made using the Mie, Rayleigh, and HG phase matrices,
respectively.

Similarly, the polarized brightness temperatures emitted in the up- and down-welling directions from

a single dry snow layer with 0.1 m thickness at four frequencies (10.7, 18.6, 37.0 and 89.0 GHz) were

studied (Figs. 10 and 11). The test details are provided in Tab. IV. From Figs. 10 and 11, the differences

in brightness temperatures due to different temperature profiles are seen. It is noted that as frequency

increases, the brightness temperatures at normal incidence decrease, which is what expected since the

snow layer appears less emissive at higher frequencies.

Table IV
SINGLE DRY SNOW LAYER USING THE REDUCED DMRT-QCA PHASE MATRIX.

Layer Temperature (K) fv τ 〈D〉 (mm) Frequency (GHz)
Snow, 0.1 m 273 0.25 0.1 1.4 10.7, 18.6, 37.0, 89.0
Snow, 0.1 m 273 to 253 0.25 0.1 1.4 10.7, 18.6, 37.0, 89.0
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Figure 10. Brightness temperatures for a dry snow layer with a constant temperature profile: (a) horizontal-upwelling, (b) horizontal-
downwelling, (c) vertical-upwelling, and (d) vertical-downwelling.

Figure 11. Brightness temperatures for a dry snow layer with a linear temperature profile: (a) horizontal-upwelling, (b) horizontal-
downwelling, (c) vertical-upwelling, and (d) vertical-downwelling.

V. CONCLUSIONS

Presented is a new unified microwave radiative transfer (UMRT) model for accurate, fast and stable

calculation of thermal radiation from any geophysical medium comprised of planar multilayer spherical
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scatterers of arbitrary electrical size. UMRT combines several unique new features from discrete ordinate

radiative transfer theory and dense media radiative transfer theory under the DOTLRT framework for

calculating the thermal radiation from either sparse or dense media. Other important features of UMRT

include: 1) the inherent stability and high computational efficiency of recursive matrix calculations

performed for both the brightness temperatures and associated Jacobians, 2) application of the reduced

Mie and DMRT-QCA phase matrices, 3) incorporation of linear radiation and temperature profiles within

each layer, and 4) use of the critical angle and Fresnel effects at layer interfaces (discussed elsewhere in

[26]). As a result of these extensions UMRT is applicable to real-time all-weather microwave radiance

assimilation in both clear and cloud atmospheres and over both simple and dense volume-scattering media

for both atmospheric and surface nowcasting and forecasting. In developing the above model, the symmetry

properties of both the Mie and DMRT-QCA phase matrices relevant for use in DOTLRT are proven and

the associated scattering and absorption coefficients are inter compared. A brief study of the stability of

DMRT-QCA was also performed. Code for UMRT calculations for a single layer (either water or snow)

were prepared and validated using energy conservation.

Ongoing work includes extending the above model to the case of multilayer stacks with refractive

boundaries. For this extension the general DRTE solution and UMRT Jacobian formulation is being de-

rived, programmed and validated. Comparison between the UMRT simulation and the field measurements

obtained over Arctic sea ice is also being pursued.

VI. APPENDIX I: PROOF OF POSITIVE DEFINITE MATRICES

In order to apply the stable matrix inversion technique of DOTLRT, proof of the matrix U +D being

positive definite is as follows:

1) Separate the matrix U + D into the sum of two matrices: one is a diagonal matrix, denoted as Sd

and the other is defined by U +D − Sd, denoted as Sr. The problem is now to prove the positive

definiteness of both of these matrices. By design the matrix Sd has elements:

Sd =

 Sdv 0

0 Sdh

 (62)

{
Sdβ

}
ij

=
keβiδij
µi
− δij

µi

M∑
k=1

γk(P
++
vβki + P+−

vβki

+P++
hβki + P+−

hβki)

, β = v or h (63)
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Note that (63) is indeed the discretized form of keβ − ksβ , which is always positive for passive

media due to inevitable small losses.

2) From the above definition, the matrix Sr is defined as

Sr =

[
Srv︸︷︷︸

2M×M

Srh︸︷︷︸
2M×M

]
(64)

{
Srβ

}
ij

= 1
µi

M∑
k=1

γk
(
P++
vβki + P+−

vβki + P++
hβki + P+−

hβki

)
δij

−
√

γiγj
µiµj

(
P++
vβij + P+−

vβij + P++
hβij + P+−

hβij

) , β = v or h (65)

Now consider the eigenvalues and eigenvectors of Sr, where Sru = λu. Following the development

of Gershgorin’s circle theorem the maximal value of the ratio ui/
√
µiγi for all i is found∣∣∣∣ ui0√

µi0γi0

∣∣∣∣ > ui√
µiγi

(66)

Assuming that ui0 > 0 and noting that the phase matrix is symmetric, it follows that

λui0 =
ui0
µi0

M∑
k=1

γk
(
P++
vβki + P+−

vβki + P++
hβki + P+−

hβki

)
−
√

γi0
µi0

M∑
j=1

ujγj√
µjγj

(
P++
vβij + P+−

vβij + P++
hβij + P+−

hβij

)
≥ ui0

µi0

M∑
k=1

γk
(
P++
vβki + P+−

vβki + P++
hβki + P+−

hβki

)
−
√

γi0
µi0

ui0√
µi0γi0

M∑
j=1

γj
(
P++
vβij + P+−

vβij + P++
hβij + P+−

hβij

)
= 0

, β = v or h (67)

3) A similar argument can be applied to the case of the matrix U −D. Hence, we conclude that both

matrices U + D and U − D are symmetric and positive definite, and therefore applicable to the

stable inversion technique used within DOTLRT.

VII. APPENDIX II: INHOMOGENEOUS SOLUTION TO A LINEAR TEMPERATURE PROFILE

Balancing (52), the terms with z dependency vanish, leading to

 u1

v1

 =

U D

D U

−1  γT

γT

 (68)
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To explicitly solve (68) we apply block matrix inversion [25] and obtain

U D

D U

−1

=


(
U −DU

−1
D
)−1

−U
−1
D
(
U −DU

−1
D
)−1

−U
−1
D
(
U −DU

−1
D
)−1 (

U −DU
−1
D
)−1


(69)

Applying (69) to (68) we have

 u1

v1

 =


(
I − U

−1
D
)(

U −DU
−1
D
)−1

γT(
I − U

−1
D
)(

U −DU
−1
D
)−1

γT

 (70)

The solution (70) can be simplified using the following derivation

(
U +D

)[(
I − U

−1
D
)(

U −DU
−1
D
)−1]

=
(
U −DU

−1
D
)(

U −DU
−1
D
)−1

= I

(71)

⇒
(
I − U

−1
D
)(

U −DU
−1
D
)−1

=
(
U +D

)−1
= A

−1
(72)

As a result of (71-72), (70) is, thus, equivalent as

 u1

v1

 =

 A
−1
F

A
−1
F

 (73)

Since u1 = v1 the remainder of (52) yields

 uo

vo

 =

U D

D U

−1  F o + u1

F o − v1


=

 A
−1
F o +

(
I + U

−1
D
)(

U −DU
−1
D
)−1

u1

A
−1
F o −

(
I + U

−1
D
)(

U −DU
−1
D
)−1

v1


(74)

Similarly, it can be shown that

(
I + U

−1
D
)(

U −DU
−1
D
)−1

=
(
U −D

)−1
= B

−1
(75)
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Thus,  uo

vo

 =

 A
−1
F o +B

−1
A
−1
γT

A
−1
F o −B

−1
A
−1
γT

 (76)

Finally, from (73,76), the inhomogeneous solution of (38) is

 uinh (z)

vinh (z)

 =

 A
−1
F o +B

−1
A
−1
γT − A

−1
γT z

A
−1
F o −B

−1
A
−1
γT − A

−1
γT z


=

 A
−1 (

F o − γT z
)

+B
−1
A
−1
γT

A
−1 (

F o − γT z
)
−B

−1
A
−1
γT


=

 A
−1
F (z) +B

−1
A
−1
γT

A
−1
F (z)−B

−1
A
−1
γT


(77)
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