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AMSU and SSMIS Sounding Principle
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Atmospheric transmittance at sounding channels
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Data Assimilation Scheme

Significance? In satellite data assimilation scheme, the cost

function i1s defined as
J :%(x—xb)TB‘l(x—xb)+%[l(x)—IO]T(E+F)‘ 1(X)—I°
where

Satellite

X IS a vector related to atmospheric and surface parameters. Observations

l, is the observed radiance vector

v

RTM

| is the radiance vector Simulations

B is the error covariance matrix of background
E is the observation error covariance matrix
F iIs the radiative transfer model error matrix

With a surface emissivity model, the difference

dTg (=1(X)-1°) is calculated and further is used to
adjust the surface and atmospheric parameters



JCSDA Microwave Surface Emissivity Models

Five Surface Types

Ocean Sea lce

Canopy (bare soil) Desert

A microwave land emissivity physical model
(LandEM) was developed by F. Weng, B. Yan, N.
Grody (JGR, 2001)

v
Empirical snow and sea ice emissivity algorithm using
microwave satellite window channels of measurements
(B. Yan and F. Weng, 2003; 2008)

(1) A‘%ast microwave ocean emissivity physical model (English and Hewison, 1998)
(2) Microwave ocean emissivity physical model (Weng and Yan)



No. 1: Empirical Algorithm Update of
Microwave Snow and Sea lce
Emissivity for MHS and SSMIS



Microwave Atmospheric Transmittance

1.0

0.3

0B

| "J'QI
Window)D
Oz Temperature

\

|||\ . 2
|| ! T~

o a0 100 150 200 250 200

04

Hz0 Moigure Sound{ng

Atmospheric Transmittance

P
"~

0.0

Frequency (GHz)
TB, = &plT + T, + (1-¢£5)4T,

At these window channels, £: 0.5~ 1.0, T, and T, << TBg, so, satellite-observed
brightness temperatures contain rich information of surface emissivity.



Snow and Sea Ice Emissivity Simulations:
Empirical Algorithm

® Generate snow/sea Ice emissivity training data
bases at a wider frequency range using an
emission-based radiative transfer equation

Tb _Tu _Td T e.q., Eight SSMIS window channels:
c = V-POL.: 19, 22, 37, 92 GHz
r (T, =Ty) H-POL: 19, 37, 92, 150 GHz

where T, is brightness temperature at window channel, T, the surface
temperature, T atmospheric transmittance, T,and T, the

brightness temperatures associated with upwelling and downing
radiance, respectively.



Microwave Spectra of Snow Emissivity

Measured Snow Emissivity Spectra

11 Ground-measured emissivity
Of snow emissivity (4.9~94 GHz)
(Méatzler, C., 1994)
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New various snow emissivity spectra based upon satellite-retrieved

and ground-measured data of snow emissivity (4.9 ~ 150 GHz)
(Yan et al., 2004)



Microwave Emissivity Spectra of Sea lce

Sea Ice Microwave Emissivity Spectra
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New various sea ice emissivity spectra based upon
satellite-retrieved and ground-measured data of sea ice
emissivity (6 ~ 157 GHz) (Yan et al., 2004)



Simulated Land, Snow, and Sea Ice Emissivity




Impact of Improved Snow and Sea Ice Emissivity at
SSMIS Channels on F16 SSMIS Data Usage
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highly variable emissivity
especially over snow and sea
ice conditions
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* Around 50% SSMIS data
passed quality control due to
improved SSMIS snow and
seaice emissivity simulations
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Improved Snow and Sea Ice Emissivity Simulations
Increases use of MHS Data in NCEP GFS

*MHS, especially over snow and
sea ice conditions, is highly
affected by variable emissivity

e Currently, only 20-30% MHS
data passed quality control in
NCEP/GSI

Improved MHS snow and sea
Ice emissivity models results in
more than 60% data passing

QC

*The impact of the MHS data
using the new emissivity
model is positive

=

N18 AMSU-A & MHS QC-Passed Data (%)
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CRTM Microwave Snow Emissivity Model Deficiencies

® Snow emissivity simulation Possible reasons:
(Weng, et al, 2001):

Simulated Snow Emissivity Spectra

1) One-layer emissivity model
IS insufficient for a highly
stratified snow medium

2) Snow optical parameter
calculations are limited to
lower frequencies/small
particles due to invalidity of
the dense media theory,
etc.

——va=0.1 & depth=0.02m
— —& —va=0.4 & depth=0.02m — - — —va=0.4 & depth=0.5m Not reasonable

va=0.1 & depth=0.5m

Not applicable to a wide variety of frequency and snow type



No. 2: Microwave Snow Emissivity
Model Update

® One-layer Is extended to two-layer
model

® Snow optical parameter calculations are
Improved



Two-layer Microwave Snow Emissivity Model
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Snow optical parameter calculation update

® Accurate solution from the dense media
theory (k,r<1.5, k,=2n/A)

* Approximate expression (k,r>1.5) (Grody and
Weng, TGRS, 2008)

where Q.. and Q.. are absorption and scattering efficiencies

. 3Va . 3Va
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H-POL Snow Emissivi

H-POL Snow Emissivi
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Simulated Snow Emissivity Spectra
Using Two-layer Microwave Snow Emissivity Model
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® Emissivity Is simulated
using the improved
SnowEM (snow depth =10
cm)

® Emissivity decreases
monotonously with
frequency for small snow
particles

® Emissivity varies
exponentially with
frequency for large snow
particles



Comparison of Simulated and

Model-Simulated Snow Emissivity

AMSU-Observed Snow Emissivity
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Observed Snow Emissivity Spectra

9 o

]
e

20 4 L]

o 0=

-

(Shallow, new smow, angle = 48 degres)

—-— OR/ES (heditrm, mew snow, angbs = 35 degres)

. DR/ (Melting snow, anghe = 38 degree])

e, 02725 (Refrozes snow. sngle = 35 degree)
g OESBE (boe—coversd spow, anghe = L8 degree)

0218 (Despmew snow, angle = L2 degres)
02/ 17 (Melting frefrozen snow, angle = 45 degree) 1

o
| |=—
0.6 —i

1 e New Snow(Shallow)
b -_—

= New Snow (Medium

= New Snow (Deep)
Melting Snow

= Frozen Snow

= Ice-CoweredSnow |

20

60 100
Fequency (GHz)

140

Seven types of snow
events are observed at
Hagerstown, Maryland in
February 2003

Observed emissivity Is
retrieved using AMSU
brightness temperatures
(Yan et al., 2008)

Spectral feature of
simulated snow emissivity
IS qualitatively consistent
to the satellite-observed
emissivity



No. 3: Multilayer Soil/Vegetation Emissivity
Model Development (wWeng et al., ITOVS-16, 2008)

® one layer vegetation scattering medium overlying a
multi-layer soil medium

® attenuation (or absorption) coefficients of each soil
layer are derived from the conservation of the energy
flux (Wilheit, 1978)



Multilayer Soil/Vegetation Emissivity Model

1. Model Description Soil dielectric model:
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Multilayer Soil/Vegetation Emissivity Model

2. Simulated Brighitness Temperature from Soil  (Weng et al., ITOVS, 2008)
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Summary and Conclusions

e Updated microwave snow and sea ice emissivity empirical
algorithms result in around 60% MHS and SSMIS data passing
QC in NCEP GDAS, which produces a positive impact on GFS
due to improved radiance assimilation

o Two-layer microwave snow emissivity physical model provides
more reasonable snow emissivity spectra which are qualitatively
consistent to several AMSU-observed emissivity spectra

« A multilayer soil/vegetation emissivity model provides more
reasonable simulations of vegetation overlying soils at lower

frequencies

Therefore, our microwave land emissivity model capability is
significantly enhanced.



Future Plans

* Validate both microwave multilayer snow and
soll/vegetation emissivity physical models

® Assess assimilation impacts of the updated
microwave snow, and soil/vegetation emissivity
physical models on GDAS and GFS

® A composite of multilayer microwave land
emissivity physical model based on the above
work will be implemented into JCSDA CRTM



® backup



Five Basic Approaches for Surface Emissivity

Approach 1: Calculate emissivity using emission-based RTM
with a proper atmospheric correction, for given atmospheric
profiles such as GDAS Products (clear sky) (Training data set)

Approach 2: Regression algorithm based upon the training data
set of emissivity and TBs from microwave brightness
temperatures at window channels (Empirical Approach)

Approach 3: Surface emissivity physical models (e.g., English
and Hewison, 1998; Wiesmann and Matzler, 1999; Weng et al.,
2001) (Physical model)

proa Iterative algorithm to simultaneous retrievals of
emissivity and other atmospheric and surface parameters from
microwave brightness temperatures at window channels

1dvar algorithm to simultaneous retrievals of T,
T, T4 € (atmospheric profiles) and emissivity from microwave
window and sounding channels



Two-layer Microwave Sea Ice Emissivity Model
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