Introduction to radiative
transfer

Robert Hudson



Electromagnetic spectrum
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Schematic of a wave
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WAVELENGTH

DISTANCE BETWEEN SUCCESSIVE PEAKS
GIVEN THE SYMBOL A
MANY UNITS USED :

(A) MICRON, 10 METERS

(B) NANOMETER, 10-° METERS

(C) ANGSTROM, 10-° METERS



FREQUENCY

Defined as the number of ma xima that pass an observer
per second

Given the symbol v
C=AvV

The term wave number 1s also used. It is the reciprocal
of the wavelength. It 1s usually given the symbol v.
Caution - the use of v and v are reversed in many
textbooks.



VELOCITY

WAVE VELOCITY IS DEFINED AS THE DISTANCE A
PEAK MOVES IN ONE SECOND.

IN VACUO THE WAVE VELOCITY OF AN
ELECTROMAGNETIC WAVE IS 2.997925x108
METERS PER SECOND

FOR THOSE OF YOU WHO PREFER ENGLISH
UNITS, THE VELOCITY OF LIGHT IS 1.80262x10*°
FURLONGS PER FORTNIGHT.

THE WAVE VELOCITY IS GIVEN THE SYMBOL c.



Planck’s spectral distribution law

e Planck introduced 1n 1901 his hypothesis
of quantized oscillators 1n a radiating body.
* He derived an expression for the
hemispherical blackbody spectral radiative
flux

FBB:mf 27hv?
2

" ¢? [exp(hv/kgT)—1]

Where h is Planck’s constant, m_is the real
index of refraction, kg is Boltzmann’s constant




Radiation intensity per unit wavelength (MW/m ! um)

Comparison of solar and earth’s
blackbody intensity

110E MW/m? = megawatts/m? _
= 10* watts/m?
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UV-VISIBLE SOLAR SPECTRUM
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INFRARED FLUX FROM EARTH
SAHARA
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Absorption in molecular lines and
bands

Molecules have three types of energy levels -
electronic, vibrational, and rotational

Transitions between electronic levels occur
mainly in the ultraviolet

Transitions between vibrational levels -
visible/near IR

Transitions between rotational levels - far IR/
mm wave region

O, and N, have essentially no absorption in
the IR

4 most important IR absorbers H,0O, CO,, O,



Vibrational levels

 Consider a diatomic molecule. The two
atoms are bound together by a force, and
can osclllate along the axis of the
molecule.

 The force between the two atoms Is given
by d°x
F=-kKX=m—-
dt’

 The solution of which is
X=X,sm(2zv,t + ¢)



Vibrational levels

* v, IS known as the vibrational frequency

1\/?
VO=2
7.\ M

* theoretically v, can assume all values

 However 1n quantum mechanics these
values must be discrete

E, =hv,(vV+1/2)

 Vis the vibrational quantum number



Vibrational levels

* In general k depends on the separation of
the atoms and we have an ‘anharmonic
oscillator’

E =hce (v+1/2)+hcax (v+1/2)* +heay, (v+1/2)



Schematic of vibrational levels
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Various forms of molecular vibration
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Rotational levels

- Consider a diatomic molecule with different
atoms of mass m, and m,, whose distance from
the center of mass are r, and r, respectively

— f k= I, >
ml m2

O O

 The moment of inertia of the system about the
center of mass 1s:

2 2
| =mr~+ m,r,



Rotational levels

- The classical expression for energy of
rotation 1s

lo® L
E, = Y where L= angular momentum
h 2
L° —>(—j J(J+1)
27

e where J 1s the rotational quantum number

E(J) = 21| (22) JJ+1)=hcBJJ+1)

B, = ———— therotational constant

gr°cl



Vibrating Rotator

* If there were no interaction between the
rotation and vibration, then the total energy of a
quantum state would be the sum of the two
energies. But there 1s, and we get

E(;]/;J) =w,(V+1/2)+w X, (V+1/2)°

+B J(J+1)-D,J*(J +1)°

 The wavenumber of a spectral line 1s given
by the difference of the term values of the two
states



Energy levels of a vibrating rotator

J
10
J ——
6 v
10 — g
J p—
-
10 e s
J
b
10 e 9
J -_— ,
10 S—
See—-A.. 1
5—-—_- - . :
——. 0

Fic. 53. Energy Levels of the Vibrat-
ing Rotator. For each of the first five
vibrational levels, a number of rotational”
levels are drawn (short horisontal lines).,



100

oo
S

N
o

—3= 0p Absorption
] .
o O

o

Fine structure in HCI

3.8 3;7 3.6| 3.5 3.4 3.3u
1 T T T I
|, n NN My ‘
N M
, R
UsUs 2 6
A 6 5,U4 32 Ul' 7
TRRE &
.I\,J J U'USP'I 9{10

12' 11' 10°

1112




Intensity distribution in bands of HCI
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Line broadening

e Classical theory leads to the following
equation for the shape of a line (transition). It
IS called the Lorentz profile

v/4r

P = S e Ay

Since the Lorentz profile is normalized we
find by integrating over all frequencies

e2

4m,&,C

sz dve,.” (v)=
0



Line broadening

e The line width (full width at half maximum) of the
Lorentz profile is the damping parameter, v.

« For an isolated molecule the damping parameter
can be interpreted as the inverse of the lifetime of
the excited quantum state.

e This is consistent with the Heisenberg Uncertainty
Principle
h h 1
AEAt=— At= ~
27 2xhAv  27Av

e |f absorption line is dampened solely by the natural
lifetime of the state this is natural broadening



Pressure broadening

For an isolated molecule the typical natural
lifetime is about 108 s, 5x10* cm-! line width

Collisions between molecules can shorten this
lIifetime

These collisions can be viewed as ‘billiard ball’
reactions, or as the overlapping of the potential
fields of the two molecules.

The collision process leads to a Lorentz line
shape.



Pressure broadening

e Clearly the line width will depend on the
number of collisions per second,i.e. on the
number density of the molecules
(Pressure) and the relative speed of the
molecules (the square root of the
temperature)

o, ~a, (STP) Vi —aL(STP)

nLVreI (STP) \/7




Doppler broadening

e Second major source of line broadening

* Molecules are in motion when they absorb. This
causes a change in the frequency of the
Incoming radiation as seen in the molecules
frame of reference (Doppler effect)

» Let the velocity be v, and the incoming
frequency be v, then

Vcos9:V+chos6’ =V(1+XCOS(9)
A C C

v =v+



Doppler broadening

e In the atmosphere the molecules are moving with
velocities determined by the Maxwell Boltzmann
distribution

m
27K, T

where v, = \/2kBT /m

1/2
f(vy)dv, :( j exp(—vy /vi)dv,




Doppler broadening

*The cross section at a frequency v 1s the sum of all
line of sight components

5,0 = v, (v )0, [1+v, /0)]

12,
m
— (ZﬂkBT ] :[o dv, exp(~v. /v.)o. (v+w, /C)

1/2
m
— G [2ﬂkBTj exp[— c’(v—v,)’ /v, ]



Doppler broadening

.  We now define the Doppler width as

an =V,V,/C

o (V)=S D, (V)= ; expl-(v—v,)* /a |




Comparison of line shapes
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The extinction law

- s —=

Iy (s +ds) =1, (8) - k(V) I, (s)ds

Iy (s=0) 3 I, (s = 0)ekV)s



Extinction Law

e The extinction law can be written as

dl, =—Kk(v)1 ds

 The constant of proportionality is defined as the
extinction coefficient. k can be defined by the length of

the absorbing path with the gas at one atmosphere
pressure

dl
| ds

| 4

K(v) = (M)



Optical depth

 Normally we are interested in the total
extinction over a finite distance (path length)

7.(v) = jds‘ K(v) = jds’ k. (V)p =jds‘ k.(v)n

Where 7(v) Is the extinction optical depth

 The integrated form of the extinction equation
becomes

,(5,Q)=1,(0,Q)exp[-7,(v)]



Extinction = scattering + absorption

« Extinction really consists of two distinct
processes, scattering and absorption, hence

7, (V) =7 (V) +7,(V)

where

r.(v)= Zjds‘ o' (v,s")

7,(V) = Zjds‘ a'(v,s)



Differential equation of radiative
transfer

 We must now add the process called emission.
* We introduce an emission coefficient, j,
« Combining the extinction law with the definition

of the emission coefficient
dl, =—k(v)l ds+ J ds

noting that
k(v)ds =dr,
dl, ],

-1, +
dr, K(v)




Differential equation of radiative
transfer

* The ratio j /k(v) Is known as the source
function,

S, = —
kK(v)

|

il =—I1,+S,

dr

S

This is the differential equation of radiative
transfer



Scattering

* Two types of scattering are considered —
molecular scattering (Rayleigh) and
scattering from aerosols (Mie)

* The equation for Rayleigh scattering can be

written as
P (2 = Sn(znj“az
n 3 ﬂ/ p

- Where a 1s the polarizability




Rayleigh scattering

A, NM G, CM? T, surface | Exp(-t)
300 6.00 E-26 [1.2 0.301
400 1.90 E-26 |0.38 0.684
600 3.80 E-27 |0.075 0.928
1000 4.90 E-28 |0.0097 0.990
10,000 4.85E-32 |9.70E-7 ]0.999

« Sky appears blue at noon, red at sunrise and

sunset - why?




Phase diagram for Rayleigh scattering
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Mie-Debye scattering

For particles which are not small compared with
the wavelength one has to deal with multiple
waves from different molecules/atoms within the
particle

Forward moving waves tend to be in phase and
this gives a large resultant amplitude.

Backward waves tend to be out of phase and
this results in a small resultant amplitude

Hence the scattering phase function for a
particle has a much larger forward component
(forward peak) than the backward component




Phase diagrams for aerosols
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Differential Equation of Radiative Transfer

* Introduce two additional parameters. B, the
Planck function, and a, the single scattering
albedo (the ratio of the scattering cross section
to the extinction coefficient).

 The complete time-independent radiative
transfer equation which includes both
scattering and absorption 1s

dl

a(v) j deo'p(QY, )1




Solution for Zero Scattering

« If there 1s no scattering, e.g. in the thermal
infrared, then the equation becomes

dl

drz,

=-1,+B,(T)



Transmittance

 For monochromatic radiation the transmittance, T, 18
given simply by

T(ru)=e""

 But now we must consider how to deal with
radiation that 1s not monochromatic. In this case the
integration must be made over all frequencies.

« Absorption cross section at high spectral resolution
are available 1n tabular form — HITRAN.

* But usually an average value over a frequency
interval is used.



Schematic for A




Transmission in spectrally complex media

e transmittance

T, =1-(a,,) :L(J‘ekvud Vj

Av e



Statistical Band Model (Goody)

Goody studied the water-vapor bands and noted the
apparent random line positions and band strengths.

e Let us assume that the interval Av contains n lines
of mean separation d, i.e. Av=nd

* Let the probability that line I has a line strength S;
be P(S;) where

Tp(si)ds 1

* P i1snormally assumed to have a Poisson
distribution



Statistical Band Model (Goody)

assuming a Lorentz line shape, one gets

S_ S_ ~1/2 ]
T =exp —Fu(l+ - j

o,

where S is the mean line strength.



Statistical Band Model (Goody)

 We have reduced the parameters needed to calculate
T to two

S o

and

« These two parameters are either derived by
fitting the values of T obtained from a line-by-line
calculation, or from experimental data.

weak line strong line

/_ e, Su \

\ c J

T = exp(— Sd—uj T =exp




K distribution technique
i = 'ﬁl_‘\?i f I'V d'\"

Since B, i1s =~ constant in an interval,

I

I, is the same when k , is the same

k} -~ = = { HHHHH — - -
5”"11- E’?zj Ewsj fw4j Gvsj
- Vi - -
avkj i . | -
. = Y—2 = fraction of Av, for whichk , = k;



K distribution technique

-

probability histogram = k; -

Rearrange k , as a 'k

)

ﬁj a

Now we need only solve M monochromatic problems

. M
I, = Ya I(k, = k;)

j=1

One can obtain the histogram from:

(a) line-by-line calculations

(b) exponential sum fitting of band model
transmission functions



Two-stream Approximation- Isotropic
Scattering

« Although anisotropic scattering is more

realistic, let’s look at isotropic scattering I.e.
p=1

* The radiative transfer equations are

dl *(z, 1) . ac, ..
= 1" (r, 1) —— | du'l " (7, it
. (7, 1) 2!# (7, 1)

24 () -0-2)8



Two-stream Approximation- Isotropic
Scattering

dl (z,n) . a .
— =17 (z, 1) ——= | d'l " (7, 1!
H— (7, 1) 2! (7, 1)

—%jdy'l (r,u')—(1-a)B

* In the two-stream approximation we
replace the angular dependent quantities I by
their averages over each hemisphere. This
leads to the following pair of coupled
differential equations



Two-stream Approximation- Isotropic

Scattering
L d@ @A o
U 1 =1"(7) 2| (7) 2| (r)—(1—-a)B
_dl"(z) - A, oa o
— U 1 =1"(7) 2| (1) 2I (r)—-(1—-a)B

If the medium 1s homogeneous then a 1s
constant. One can now obtain analytic
solutions to these equations. u in the above
equations 1s the cosine of the average polar
angle. It generally differs 1n the two
hemispheres



Discrete Ordinate Method — Isotropic Scattering

e The solution of the 1sotropic scattering problem
involves the following integral over angle

jdul (7,U) =jdyl +(2',u)+j-d,ul “(7,u)

 In the two stream method we replaced the
integration over u with the simple formula

jdul =17 () + 17 (7)



Discrete Ordinate Method — Isotropic Scattering

 This 1s obviously a crude approximation. We can improve
the accuracy by including more points in a numerical
quadrature formula

* Where w’; 1s a quadrature weight, and u; 1s the discrete
ordinate

* Most commonly used radiative transfer computer codes 1s
DISORT — DIScreteOrdinateRadiative Transfer



	Introduction to radiative transfer
	Electromagnetic spectrum
	Schematic of a wave
	WAVELENGTH
	FREQUENCY 
	VELOCITY
	Planck’s spectral distribution law
	 Comparison of solar and earth’s blackbody intensity
	UV-VISIBLE SOLAR SPECTRUM
	INFRARED FLUX FROM EARTH�SAHARA
	Absorption in molecular lines and bands
	Vibrational levels
	Vibrational levels
	Vibrational levels
	Schematic of vibrational levels
	Various forms of molecular vibration
	Rotational levels
	Rotational levels
	Vibrating Rotator
	Energy levels of a vibrating rotator
	Fine structure in HCl
	Intensity distribution in bands of HCl
	Line broadening
	Line broadening
	Pressure broadening
	Pressure broadening
	Doppler broadening
	Doppler broadening
	Doppler broadening
	Doppler broadening
	Comparison of line shapes
	The extinction law
	Extinction Law
	Optical depth
	Extinction = scattering + absorption
	Differential equation of radiative transfer
	Differential equation of radiative transfer
	Scattering
	Rayleigh scattering
	Phase diagram for Rayleigh scattering
	Mie-Debye scattering
	Phase diagrams for aerosols
	Differential Equation of Radiative Transfer
	Solution for Zero Scattering
	Transmittance
	Schematic for A
	Transmission in spectrally complex media
	Statistical Band Model (Goody)
	Statistical Band Model (Goody)
	Statistical Band Model (Goody)
	K distribution technique
	K distribution technique
	Two-stream Approximation- Isotropic Scattering
	Two-stream Approximation- Isotropic Scattering
	Two-stream Approximation- Isotropic Scattering
	Discrete Ordinate Method – Isotropic Scattering
	Discrete Ordinate Method – Isotropic Scattering

