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NRL/FNMOC Forecast Suite
• NOGAPS - Navy Operational Global Atmospheric Prediction System

– Provides input/boundary conditions for 
• mesoscale, ocean, wave and ice prediction models, 
• ensemble forecasting system
• Aircraft and ship routing programs  
• tropical cyclone forecast model (GFDN)
• Aerosol forecasting model, NAAPs
• Chemistry model, CHEM2D-OPP

• COAMPS®* - Coupled Ocean/ Atmosphere Mesoscale Prediction 
System
– nonhydrostatic; globally relocatable, nested grids; explicit prediction 

of moisture variables
– 5-10 different operational areas
– drives ocean, wave, aerosol and EM propagation models
– Ensemble forecasting system under development

• Both models used for basic research, predictability studies, adjoint
sensitivity studies, adaptive observation-targeting

* COAMPS® is a registered trademark of the Naval Research Laboratory, Monterey CA Approved for public release



Predictive tropospheric and stratospheric aerosol fully embedded within NOGAPS.

Fully interactive physics – aerosol, cloud formation, and radiative transfer.

Aerosol coupled to wave model; salt production from WW3.

Aerosol data assimilation integrated into NAVDAS-AR.

Aerosol data assimilation will include UV and VIS radiances. 

Aerosol impacts will be included in radiance data assimilation for NWP.
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This work was funded by the JCSDA and 
was delivered to NCEP GFS and NASA 
GMAO as well as NOGAPS.

NOGAPS-ALPHA                                
Homogeneous Ozone Photochemistry Scheme

NOGAPS-ALPHA                                
Homogeneous Ozone Photochemistry Scheme

First Ever Splitting of Antarctic Ozone Hole:  September 2002

CHEM2D-OPP has to date proved superior to photochemistry schemes used 
in the ECMWF IFS, [former] NCEP GFS, & NASA GEOS5 & GISS models.

NRL Space Science Division
“NOGAPS-ALPHA provides a 
state-of-the- art stratosphere 
for NWP applications”

“We get a much improved split 
vortex in the +5 day 
forecast by using 

(a) new T239L54 NOGAPS-
ALPHA

(b) new 3DVAR-based 
reanalysis (NAVDAS)



Special Partnership with Primary Customer FNMOC

Seamless transition from research to operations.  

Operational problems can be quickly addressed by NRL.

Complex operational systems are used in basic research.

Operational requirements can influence basic research.
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• Integrated wave model SWH assimilation and QC code in NCODA 

• Completed QC of altimeter SWH data and free run of WW3 model as 
control

• Performing wave model assimilation runs for pre-beta validation

• Verification includes independent buoys and yet-to-be-assimilated 
altimeter data – SWH, mean wave period, and buoy spectra vs. model 
spectra   

Wave Model Assimilation Validation Wave Model Assimilation Validation 

Altimeter SWH Observations             Analyzed Increment SWH (m)

Model Forecast SWH (m)                     Corrected Model SWH (m)

Assimilation via 6-Hour Sequential Incremental Update Cycle
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*NRL Atmospheric Variational Data Assimilation System – Accelerated Representer
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NAVDAS-AR*
Let  be the TLM around the ith trajectory that maps perturbations 

from time step j to time step j+1.
Let  be the covariance of model errors associated with the time step 
that are uncorrelated with
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• When model error included in 4D-Var, best estimate is not a model 
trajectory as it is in strong constraint 4D-VAR

• What to do?
• NRL’s current approach is to simply linearize about the best state 

estimate and propagate error covariances about it. This approach to 
the outer loop is often called the “Picard” iteration.

• See Y. Tremolet’s presentations for alternatives.

Model Error, Outer Loop, Picard 
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Preliminary Results for 06 Winter
‘AR’ vs. OPS

Forecasts produced with NAVDAS-AR are better than the ones 
produced with the FNMOC OPS for the winter of 2006.

NAVDAS-AR
OPS



Minimum Error Variance (MEV) versus (Tremolet’s) 

Maximum Likelihood (ML) Formulation
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• If error propagation is linear, error distributions are Gaussian and 
exact minima of cost-functions are found, then methods would be 
identical. 

• Given that the outer loop in MEV is very similar to that in ML, can 
the outer loop introduce significant differences? 

• Satellite observation errors have non-trivial correlations across 
space, time and channels. 

• The MEV formulation does not require a precise inverse of the 
observation error covariance matrix. 

• In order to rigorously handle these correlations, does the ML 
formulation require the exact inverse of the observation  error 
covariance matrix? 

• It is trivial to find the adjoint/gradient of the MEV formulation.
• Does the ML adjoint require line-by-line derivation?

Minimum Error Variance (MEV) versus (Tremolet’s) 

Maximum Likelihood (ML) Formulation



OBSERVATIONS 
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Estimation of ob impact using adjoints
Langland and Baker (Tellus, 2004), Xu, Langland, Baker, and Rosmond (2006)
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Adjoint-based ob impact (green line) accounts 
for ~84% of actual error (blue line) difference

Adjoint includes large-scale precip, no convection

e30
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Actual squared error reduction

The adjoint based ob impact is a good predictor of the true impact
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AQUA sensitivity specified by channel number: Aug 15-26, 2006

Assessment of AQUA sensorsAssessment of AQUA sensors
AMSU/A, AMSU/A, AIRS AIRS longwavelongwave 1414--1313µµm, m, 

AIRS shortwave 4.474AIRS shortwave 4.474µµmm, , AIRS shortwave AIRS shortwave 4.1804.180µµmm

Beneficial                      Non-beneficial

NAVDAS ADJOINTNAVDAS ADJOINT
Total Impact by Satellite ChannelTotal Impact by Satellite Channel

Funded in part by JCSDA

• NRL pioneered methodology for 
quantifying reduction in forecast 
error for each individual satellite 
channel

• JCSDA partners will use 
methodology to optimally select 
satellite observations for maximum 
NWP impact.

• Comparison of observation impact 
results between JSDCA partners will 
help identify problems with observing 
systems and assimilation systems.

• AIRS has 2378 
spectral channels!
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ECO-RAP 
A new adaptive error covariance 

localization tool for 4-dimensional ensemble 
data assimilation

Craig H. Bishop, Daniel Hodyss, 
William. F. Campbell, and Justin G. Mclay

Naval Research Laboratory, Monterey, California



Outline

• Motivation
• How ECO-RAP works
• Idealized tests
• Review
• Computational considerations/speed-up
• Preliminary experiment with NWP model
• Conclusions



Ensembles give flow dependent, but noisy correlations

Stable flow error correlations

km

km

Unstable flow error correlations

Small Ensembles and Spurious Correlations



Today’s fixed localization functions limit adaptivity

Current ensemble DA techniques
reduce noise by multiplying ensemble 
correlation function by fixed
localization function (green line).

Resulting correlations (blue line) are too 
thin when true correlation is broad and 
too noisy when true correlation is 
thin.

Stable flow error correlations

km

km

Unstable flow error correlations

Fixed localization

Fixed localization

Small Ensembles and Spurious Correlations
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ECO-RAP: Ensemble COrrelations RAised to a Power



ECO-RAP: Ensemble COrrelations RAised to a Power

• Ensemble correlations contain propagation and 
length scale information.

• Ensemble correlations corresponding to large true 
correlations are bigger than those corresponding to 
true zero correlations. (Variance of spurious is 1/K).

• Raising ensemble correlations to a power attenuates 
small values more than large values.

• Sandwiching non-adaptive localization matrix 
between ensemble correlation matrices raised to a 
power yields adaptive localization matrix.



Tune for short error length scales then test on broad 

Stable flow error correlations

km

km

Unstable flow error correlations

Fixed localization

Fixed localization

Length Scale Variability Experiment



RMS(εa)
RMS(εopt)

Broader Errors←

Length Scale Variability Experiment

Non-adaptive

ECO-RAP

• Tune ECO-RAP and Non-Adaptive 
localization methods for lowest analysis 
error at scale d = 16 with 156 obs

• Compare the performance of the two 
schemes when the true error correlation 
length scale is broader than that for d=16

d

Moderation Function for d = 16 Moderation Function for d = 2

ECORAP
LocalizationRaw Ensemble 

Correlation

ECORAP
Localization

Raw Ensemble 
Correlation



Single ob. 4D Data Assimilation Test (16 members)

• 32 variables in periodic domain

•Truth moves to the right one grid point per time step

• One ob. per time step at variable 16 (very small ob 
error variance)

•After 32 time steps use all 32 collocated 
observations to estimate the initial state 



No Localization Non-adaptive localization

ECO-RAP • No localization produces an inaccurate 
estimate everywhere

• Non-adaptive localization can only use 
observations close to the analysis time

• ECO-RAP recovers the true state

32 observations 32 observations

True state

Single ob. 4D Data Assimilation Test (16 members)

32 observations



Localization or Moderation?

1) Are the variables whose forecast errors correlate with 
another variable confined to the geographic 
neighbourhood of that variable?

2) What is “local” about forecast errors due to a 
misspecification of the albedo of stratus clouds?

3) What is “local” about errors associated with a sudden 
stratospheric warming event?

4) ECO-RAP can moderate spurious correlations even 
when the answer to (1) is “No”.



Localization or Moderation?

K = 16 member 
ensemble

Ensemble 
correlation 
(K members)

n Hadamard
products of 
ensemble 
correlation 

a spectral
smoother 
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Review

• ECO-RAP is a new flow-adaptive localization 
method for ensemble DA. 

• It raises ensemble correlations to powers (Hadamard
products) to selectively reduce spurious correlations.

• Broad localization functions are obtained by 
sandwiching non-adaptive localization matrices 
between correlation matrices raised to a power.

• ECO-RAP adapts to changes in the propagation and 
scale characteristics of errors.

• ECO-RAP is as good as non-adaptive localization 
when error distribution is invariant.



Computational Issues

• N=number of model variables
• has N2 elements 
• So does the Covariances Adaptively Localized with 

ECO-rap (CALECO) matrix  

  CECO−RAP = CK
Dn ˜ E ̃  Λ ̃  E TCK

Dn

f f n T n
CALECO K K K

⎡ ⎤= Λ⎣ ⎦P P C E E CD D� � �D



Local Ensemble Transform Kalman Filter

• Local Ensemble Transform Kalman Filter (LETKF)  
[Hunt et al (2007; Physica D)]
– Each grid point is updated only with the observations lying 

within grid point’s observation volume.
– Each grid point can be updated independently so algorithm is 

scalable.
– Finite observation volume is needed to limit the effect of 

spurious long-distance correlations.
– Problematic for observations of vertical integrals of model 

variables such as satellite obs. 
– Problematic for 4D assimilation when errors propagate further 

than the localization width over the time window of interest. 
– Redundancy in observation processing since there is a high 

degree of overlap between volumes.



Turbulence inspired recipe for huge 
‘turbulence’ ensemble

.

.

.

.

.
…………………………

Injection of energy 
at large scales

Flux of energy via 
non-linear products

Dissipation

Turbulent energy cascade following
Richardson’s (1922) ideas.

.

.

.

.
…………………………

1,1 1,2 2,1 2,2 3,1 3,2

3 smooth  
perturbations

Non-linear products 
enlarge ensemble  

Turbulence Ensemble

Recipe for creation of huge ensemble 
from small ensemble

1 2 3

1,3 2,3 3,3

If covariance of turbulence ensemble was CALECO then computer 
memory would only need to store “energy containing eddies”.           
Is there a turbulence ensemble whose covariance is CALECO? 
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LETKF using CALECO turbulence

• When CALECO is used in LETKF size of observation 
volumes is unconstrained because localization is 
implicit in CALECO.

• Larger observation volumes are appropriate for satellite 
DA and 4D-DA

• Larger observation volumes enable entire grid columns 
(or indeed the entire globe) to be updated 
simultaneously and hence avoids redundancy in 
observation processing.

• Note that ensemble size is now given by the size of the 
turbulence ensemble. 

• The size of the turbulence ensemble is an upper bound 
on the dimension of the error and is usually < number of 
obs.



Multi-variate or Uni-variate ECO-RAP

• ECO-RAP can provide multi-variate “localization”.
• However, in this experiment, to further increase the 

computational efficiency of ECO-RAP, we chose a 
single variable θe to localize u,v,T

• Future work will consider fully multivariate ECO-
RAP together with alternative univariate
formulations (e.g. using φ) 



v Increment From a Single T Ob.

No 
Localization
Increment

3 Z 6 Z 9 Z

ECORAP
Localization

ECORAP
Increment

+

+

+



Example ECO-RAP Localization Functions

3 Z 6 Z 9 Z

3 Z 6 Z 9 Z



LETKF using CALECO: Preliminary Experiment

• K = 27 member ensemble, T119L30 NWP model (NOGAPS).
• 7x7x30 grid box size .
• 3o grid resolution.
• We observe u,v,T at every point within the box at 3Z and 9Z, 

and attempt to estimate the state at 6Z.
• ‘Truth’ is assumed to be a 21-27 hour forecast.
• First guess/ensemble come from last 6 hrs of 9 hr forecast 

valid at the same time.
• Observations are the ‘truth’ plus random number
• Observation error variance is 1 m2/s2 and 1 K2

• Number of obs = 8820, Number of variables=13230
• K_Turbulence=1640
• Smoothed ensemble perturbations before applying ECO-RAP
• Correlations were raised to the 12th power



Globally Averaged Results

Zonal Wind

σ

Meridional Wind

σ

σ

Temperature

Forecast ECORAP No Loc.

4.6
4.8
1.8

3.8
3.9
1.7

u 3.1
v 3.1
T 1.6

Global RMS Error



Summary

• Ensemble localization is equivalent to running 
ensemble through a 1-step turbulent cascade where 
energy containing eddies are the raw ensemble and 
the columns of the square root of the localization 
covariance matrix. 

• Turbulence analogy, separability, and spectral 
truncation enable computationally efficient DA 
algorithm – cost governed by error dimension.

• ECO-RAP allows larger observation volumes in 
LETKF - outperforms  raw ensemble.


	NRL/FNMOC Forecast Suite
	Outline
	ECO-RAP: Ensemble COrrelations RAised to a Power
	Localization or Moderation?
	Localization or Moderation?
	Review
	Computational Issues
	Local Ensemble Transform Kalman Filter
	LETKF using CALECO turbulence
	Multi-variate or Uni-variate ECO-RAP
	v Increment From a Single T Ob.
	Example ECO-RAP Localization Functions
	LETKF using CALECO: Preliminary Experiment
	Globally Averaged Results
	Summary

