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scientific understanding  � � capability to model        .
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Uncertainties in 
scientific understanding

Different types of:    scientific understanding �� uncertainties

• Uncertainties in our understanding of

– elementary processes
� we can not write down the mathematical equations 

� e.g. what is the chemistry of certain ice nuclei
� we are unsure about some parameters in these equations

– collective processes 
� too complex 
� too nonlinear (chaotic, not predictable)

– atmospheric conditions  / atmospheric composition
� e.g. number and distribution of ice nuclei

scientific understanding  � � capability to model        .
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Where are the uncertainties?
Everywhere – a few examples:
• Micro-physics

– ice processes 
– micro-physics �� turbulence interaction
– aerosol �� cloud interactions 

• Subgrid variability
– cloud geometry
– dependence on history of clouds and subgrid processes

• Convective clouds
What determines the 
– triggering of convection 
– mixing of updraft/downdraft with ambient air
– microphysics of convective clouds

• Impact on dynamics
– storm dynamics
– organized convection
– upscaling of errors
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Why does it matter
to data assimilation?

• Inaccuracies of forward operators

• Wrong model balances (DA can not change these but should be aware)
– e.g., wrong tropospheric stability 
– may get disturbed when confronted with reality (observed data)

� spin up/spin down problems

Example:   HIRS assimilation 
Temperature increm.:  Exp. - Control

zonal and temporal mean
First Guess             Analysis

First HIRS exp. with our old model (GME)
�HIRS assimilation increased warm bias 

(both FG + Ana)
�But: analysis incr.  reduced this increase

� Where did the heating come from???
� Latent heat!!! 
�Tropical precip 6% increased

�Assimilation disturbed 
model balance
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Why does it matter
to data assimilation?

• Inaccuracies of forward operators

• Wrong model balances (DA can not change these but should be aware)
– e.g., wrong tropospheric stability 
– may get disturbed when confronted with reality (observed data)

� spin up/spin down problems

• Which variables (cloud properties ) should be assimilated to improve clouds in 
the model?
– we should correct the cause and not just the symptom

• Many model improvements will (probably) largely depend on data assimilation

model improvements �� data assimilation

analysis closer to reality  � better chance to detect model deficiencies
model closer to reality  � better chance to improve/correct data assimilation
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Different microphysics
schemes can give very
different results

� For example, Wu and Petty (2011)
„Intercomparison of Bulk Microphysics
Schemes in Model Simulations of 
Polar Lows“,   Mon. Wea. Rev. 

Micro-Physics Matter!
(1)
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Different microphysics
schemes can give very
different results

� Example, Fovell et al. (2010) found 
a pronounced effect of 
ice microphysical assumptions
on hurricane tracks.

Micro-Physics Matter!
(2)
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Where are the uncertainties?
Everywhere – a few examples:
• Micro-physics

– ice processes 
� nucleation:  homogeneous ��heterogeneous  
� accommodation coefficient
� ice habit
� ice fragmentation/multiplication/secondary ice production
� hail growth

– micro-physics �� turbulence interaction
– aerosol �� cloud interactions 
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Uncertainty of particle
properties

� Ice particles have many different 
shapes or habits.

� Preferred growth regimes depend on
temperature and supersaturation.

� But due to sedimentation and
advection there is no unique
diagnostic relation between state
variables and particle habits.
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� sedimentation and growth rates strongly depend on the terminal fall velocity

Uncertainty of particle properties � fall speeds
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Multiple modes:   Competing ice processes

� homogeneous nucleation
� large number of cloud nuclei
� high optical thickness 

� heterogeneous nucleation
� starts at higher temperatures
� properties of ice nuclei 

� glaciation dynamics

Major uncertainties
� availability of ice nuclei (IN)
� properties of IN

large 
supersat. 
(T< -38C)

Ice  Nucl. 
pre-

existing

requirements
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COSMO Model: second peak   Are there too many very cold clouds?
• Use more realistic micro-physics:

– prognostic Ice Nuclei (IN) [can be trapped in snow]
– sedimentation of ice not neglected
� heterogeneous nucleation produces less but larger ice particles
� sedimentation
� less water available for homogeneous nucleation
� smaller optical depth of cirrus clouds

(S.Eikenberg, C.Köhler, A.Seifert, S.Crewell, j.atmosres 2015)
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Where are the uncertainties?
Everywhere – a few examples:
• Micro-physics

– ice processes 
– micro-physics �� turbulence interaction
– aerosol �� cloud interactions

• Subgrid variability
– cloud geometry

� cloud fraction
� cloud overlap
� in-cloud variability

– dependence on history of clouds and subgrid processes
� evolution of cloud patterns, spatial organization 
� cold pools, precip falling in moist/dry air
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• generally depends on the history of the clouds

rain formation �� organization of clouds

(Schemann and Seifert 2015, in preparation)

Subgrid distribution of clouds
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Computing  micro-physics �� dynamics interactions require
– not only the PDFs of cloud water and rain water, e.g.,

– but also joint probabilities (e.g., x1 = qc ,  x2 = qr ):    

• generally depends on the history of the clouds

rain formation �� organization of clouds

Subgrid distribution of clouds
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Where are the uncertainties?
Everywhere – a few examples:
• Micro-physics
• Subgrid variability

• Convective clouds

What determines the 
– triggering of convection

� cold pools, evolution, role for triggering
� gravity waves
� convergence

– mixing of updraft/downdraft with ambient air
� homogeneous �� heterogeneous  mixing
� importance (existence?) of less diluted updraft cores
� overshoots

– microphysics of convective clouds
� in the anvils
� in the updrafts - production of graupel, hail
� evaporative cooling � downdrafts

• Impact on dynamics
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Where are the uncertainties?
Everywhere – a few examples:
• Convective clouds :

What determines the 
– triggering of convection
– mixing of updraft/downdraft with ambient air
– microphysics of convective clouds

• Impact on dynamics
– storm dynamics
– organized convection

� diurnal cycle 
� Mesoscale Convective Systems (MCS)
� Madden-Julian Oscillations (MJO)

– upscaling of errors
� forecast busts 
� How chaotic is the moist atmosphere? (predictability)
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Convective Clouds
Large scale 

• Large scale model parametrizations:
– based on entraining plumes studied in the 50s

� steadily maintained point source (self similar)
� No buoyancy reversal

– problems to cover development/organization of 
convection on different scales, different regimes
� diurnal cycle 
� Mesoscale Convective Systems (MCS)
� Madden-Julian Oscillation (MJO)

– However some progress, improvements
� strong entrainment (more realistic) � organization 

� only in dry environment 
(RH dependent entrainment rates)

� dryness prevents convection
� splitting CAPE into tropospheric and BL part 

� diurnal cycle

(reproduced from Morton et al 1956:
Turbulent gravitational convection
from maintained and instantaneous
sources)
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From Bechtold et al (JAS 2013): 
Representing Equilibrium and 
Nonequilibrium Convection in 
Large-Scale Models 

Convective Clouds
diurnal cycle 

• Large scale model parametrizations:
– Progress modelling diurnal cycle 

� splitting CAPE into tropospheric and BL part 
� diurnal cycle

• Without (deep) convection scheme :
– 3-10km grid spacing   conv. “grey zone ” 
– Diurnal cycle: convection typically too late
– the coarser grid � later convection 

(it takes longer to initiate larger clouds)
� tuning of subgrid (BL) turbulence scheme crucial
� possible trade off: 

� convection early enough  but T-profile too unstable
• Even smaller scales: 

– 500m-3km grid spacing “cloud permitting models ”
– < 500m    grid spacing Large Eddy Simulations 

� Diurnal cycle well resolved depending on type of forcing of the day 
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Rodwell et al 2013: 
occasional poor forecasts

Busts 8-10 Apr 2011

584 Busts in ERA Interim - Composite

Day 6 forecast skill over Europe

Mean initial (6h) CAPE anomaly for Day 6 busts over Europe
5% level significance: bold color

• Increased initial CAPE over USA correlates with EU busts
• Best and worst ensemble member have same initial 

perturbation with opposite sign
• MCS slow synoptic evolution
• MCS requires parameterisation

Upscaling of Errors,
Predictability
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Zhang et al 2007: 
3 stages of error growth

Idealized MM5 simulation, nested domain at 10km resolution

• Stage 1: errors growth fast on small scales due to convective
instability and latent heat release, but saturate quickly

• Stage 2: perturbations expand in spatial scale and come into
geostrophic balance

• Stage 3: balanced perturbations grow on synoptic scales in 
presence of baroclinic instability

V 500hPa difference (red/blue)

Precipitation (grey shaded)
Z 500hPa (black)
CAPE (green)

3400km

2700km

Perturbation: 0.2K
Stage 1 : 0-6h

Stage 2 : 3-18h

Stage 3 : >12h

Upscaling of Errors,
Predictability
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Conclusions

• Moist processes involve uncertainties at all scales

– micro-physics  -- subgrid -- convective scale  -- large scale

• The perfect model assumption (in DA) is wrong

• Assimilating cloud and precipitation processes is i mportant

• I wish us a good and interesting work shop

Thank you for 
listening


