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* Forecasting the weather - we are really getting better!

* Why: Better obs? Better models”? Better data
assimilation”?

* Intro to data assim: a toy scalar example 1, we
measure with two thermometers, and we want an
accurate temperature.

* Another toy example 2, we measure radiance but we
want an accurate temperature: we will derive OI/KF,
3D-Var, 4D-Var and EnKF for the toy model.

* The equations for the huge real systems are the same
as for the toy models.




Some statistics of NWP...

Permanent verifications of the forecast:

ECMWF FORECAST VERIFICATION 12UTC

500hPa GEOPOTENTIAL

ANOMALY CORRELATION FORECAST
EUROPE LAT 35.000 TO 75.000 LON -12.500 TO 42.500

=e==SCORE REACHES 60.00
== SCORE REACHES 60.00 MA

Forecast Day MA=12 Month Moving Average
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NCEP observational increments
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Comparisons of Northern and Southern Hemispheres

Anomaly correlation (%) of 500hPa height forecasts

—— Northern hemisphere

—— Southern hemisphere
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Comparisons verifying

forecasts aaainst observations
1-day forecasts, 850hPa, NH, verification of wind

Step: 24 RMSEF 850 hPa ft/n.hem/observations

BOM 12 - CMC 12

ECMWF 12

MetOffice 12

—— NCEP 12

JMA 12
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1-day forecast 500hPa Z, NH

Step: 24 RMSEF 500 hPa z/n.hem/observations

- CMC 12 —— ECMWF 12 — MetOffice 12 ~—— NCEP 12

JMA 12




3-day forecast, 500hPa, NH against observations

Step: 72 RMSEF 500 hPa z/n.hem/observations

- CMC 12 —— ECMWF 12 — MetOffice 12 —— NCEP 12

JMA 12
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5-day forecast, 500hPa, NH, 12 month average

Step: 120 RMSEF 500 hPa z/n.hem/observations

BOM 12 — ECMWF 12 ~  sesees DWD 00




Satellite radiances are essential in the SH

Observing
System

Experiments
(ECMWF - G.
Kelly et al.)

NoSAT= no satellite
radiances or winds

Control= like operations

NoUpper=no radiosondes,
no pilot winds, no wind
profilers
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00 UTC 06 UTC 12 UTC

Observations) Observations

Observations)

" Forecast | [ _Forecast |

Typical 6-hour analysis cycle.

Bayes interpretation: a forecast (the “prior”), is combined with the
new observations, to create the Analysis (IC) (the “posterior”)



Intro. to data assim: toy example 1 summary

A forecast b and an observation o optimally combined (analysis):

2
O, 1 1 1
T:Tb+ (T T) with —=—+4 —

’ o, +0. o. o0, O,

a

o

If the statistics of the errors are exact, and if the coefficients
are optimal, then the "precision"” of the analysis (defined as
the inverse of the variance) is the sum of the precisions of
the measurements.

Now we are going to see a second toy example of data
assimilation including remote sensing,.

The importance of these toy examples is that the equations
are identical to those obtained with big models and many obs.




Intro. to remote sensing and data
assimilation: toy example 2

 Assume we have an object, like a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.q.: y=hT)~ oT*




Intro. to remote sensing and data
assimilation: toy example 2

* Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
can only measure the radiance y (W/m?) that it emits. We have
an obs. model, e.q.: y=WT)~oT"*

* We also have a forecast model for the temperature
T(t.,)=m|T()l;
e.g.,T(t,,,)=T(t,)+ At|SW heating+LW cooling|



Intro. to remote sensing and data
assimilation: toy example 2

« Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.9.:  y=n(T)~oT*

* We also have a forecast model for the temperature
T(t.,)=m|T()l;
e.g.,T(t,,,)=T(t,)+ At|SW heating+LW cooling|

« We will derive the data assim eqs (KF and Var) for this toy
system (easy to understand!)



Intro. to remote sensing and data
assimilation: toy example 2

« Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.g.:  y=T)~oT*

* We also have a forecast model for the temperature

T(t,.,)=m|T()l;
e.g.,T(t,,,)=T(t,)+ At|SW heating+LW cooling|

* We will derive the data assim eqs (OI/KF and Var) for this toy
system (easy to understand!)

« Will compare the toy and the real huge vector/matrix
equations: they are exactly the same!



Toy temperature data assimilation, measure radiance

We have a forecast T, (prior) and a radiance obs Y, = /(1)) + &,

The new information (or innovation) is the
observational increment:

y, —h(T,)



Toy temperature data assimilation, measure radiance

We have a forecast T, (prior) and a radiance obs Y, = /(1)) + &,

The new information (or innovation) is the
observational increment:

yo o h(Tb)
The final formula is very similar to that in toy model 1:
I, =T,+w(y, = h(I,))

with the optimal weight w=0,H (0" +Ho,H)
Recallthat 7 =T, +w(y, —h(T,))=T,+w(e, — Heg))

So that, subtracting the truth, & =¢, + w(e, — HE))



Toy temperature data assimilation, measure radiance
Summary for Optimal Interpolation/Kalman Filter (sequential):

T =T, +w(y —h(T))) analysis

with w= GZH(Gi + cyZHz)‘1 optimal weight

The analysis error is obtained from squaring €, =€, + w[so — Heb]

2
— o
2 2 2 0 2
o, =€ =(-wH)o, = R o
0 b

It can also be written as

| [1 sz o
S— + analysis precision=

sz 002 forecast precision + observation precision




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T;)+ &

Innovation: Yo ™ h(Tb)
From a 3D-Var point of view, T —TYY (WT )=V )
we want to find a T, that ](Ta)=( 1y +( (7,) 2)70)

2
minimizes the cost function J: 2(719 260




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T;)+ &

Innovation: Yo h(Tb)
From a 3D-Var point of view, (T.-T.) (WT)-7y)
we want to find a T, that J(T,)=—= 2b + — Yo
minimizes the cost function J: 2619 260

This analysis temperature T is closest to both the
forecast 7, and the observation y, and maximizes the

likelihood of T_~T, ., given the information we have.

It is easier to find the analysis increment T7_-T, that
minimizes the cost function J



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T;)+ &

Innovation: Yo h(Tb)
From a 3D-Var point of view, (T.-T.) (WT)-7y)
we want to find a T, that J(T, )=—= 2b + - 2y0
minimizes the cost function J: 2(719 260

The cost function is derived from a maximum likelihood analysis:



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T;)+ &
Innovation: Yo ™ h(Tb)

2 2
From a 3D-Var point of view, J(T)= 1, -1,) n (W(T,)—-Y,)
we want to find a T, that ’ 20, 20"
minimizes the cost function J:
2
ruth Tb) :|

. . 1 (T
Likelihood of T, given T,: exp| ——
V27O, 20,




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T;)+ &
Innovation: Yo ™ h(Tb)

2 2
From a 3D-Var point of view, J(T)= T, -T,) n (h(Ta) —Y,)
we want to find a T, that ‘ 20, 20"
minimizes the cost function J: _

Likelihood of T, ., given T,: 1 (szm — 1, )2
truth b exp
V27O, 20,

2
Likelihood of (T,) given v, Lol ) =)

V27o, 20°




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T;)+ &

Innovation: Yo h(Tb)
From a 3D-Var point of view, T —TY (WT))=v )
we want to find a T, that 2]min:( s 2b) +( ( a)2 Vo)
minimizes the cost function J: 0, o,
Likelihood of T,,, given T,:  ———exp (T =T.)
truth 9 br \/E% 267
Likelihood of h(T,,,) given y: 1 (W(T,) =)
exp| — -
V2ro, 20,
Joint likelihood of T,_ . i 2 2]
fruth 1 eXp . (]-;ruth o Tb) . (h (]-;ruth) o y 0)
J2ro, 20, 20,

Minimizing the cost function maximizes the likelihood of the
estimate of truth



Toy temperature data assimilation, variational approach

Again, we have a forecast T, and a radiance obs Y, =/(T}) + &
Innovation: Yo ™ h(Tb)

We want to find (T,-T,) that (T,-T,) (WT)-y,)
. e . 2] = a + a 0

minimizes the cost function J. min G2 G’

This maximizes the likelihood of b o

T ~T,un 9given both 7, and y,




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T,)+ &

Innovation: Yo — h(Tb)
We want to find (7,-T,) that , ,
minimizes the cost function J. T ) = (T,-T,) (W(T,)-y,)
This maximizes the likelinood of /()= "7 T,
T,~T,un given both 7, and y, b 0

To find the minimum we use an WT)—y = h(Tb)— y +H(T, — Tb)
incremental approach: find 7, —7,,: ¢ o o a

So that from oJ (T, —T,)=0  we get

1 H?
(T, - Tb)[G_Z+ >

4

L _ Q= hT,)
0 o)

a 4

]:(Ta _Tb)



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T,)+ &

Innovation: Yo — h(Tb)
From a 3D-Var point of view, (T,-T, )? (W(T,)— 0)2
we want to find (7, -T,) that J(T,)= zb + 2 a

minimizes the cost function J. 20, 20

To find the minimum we use an WT)—y = h(Tb)— y +H(T, — Tb)
incremental approach: find 7, —7,,: ¢ o o a

So that from oJ (T, —T,)=0  we get

o

(71, _Tb)[iz'k Hz ): (T,-T,) 12 = H(yo _}Z(Tb))
O, O, O, o
o lo=1,+ W(yo B h(Tb)) where now

—1
w=(0,"+Ho,'H) Ho, =0.Ho,



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T,)+ &
Innovation: Yo ™ h(Tb)

2 2
3D-Var: T, minimizes the distance to both 2y = La=1)" (1) =7.)
the background and the observations O, o

3D-Var ) N .
solution L, =T, +w(y, —h(T,)) with w = (sz + HGOZH) Ho''=0’Ho,




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T,)+ &
Innovation: Yo ™ h(Tb)

2 2
3D-Var: T, minimizes the distance to both 2y = La=1)" (1) =7.)
the background and the observations O, o

3D-Var : 2 \! - .
Solutlon Ta — Tb + W(yo - h(Tb ))W|th W3D—Var — (sz + H602H) H602 = GZHGOQ

This variational solution is the same as the one obtained before with Kalman
filter (a sequential approach, like Optimal Interpolation, Lorenc 86)):

KF/Ol Ta — Tb + w(yo — h(Tb)) with Wo; = GZH(Goz + GZHZ)—I
solution



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = 1(T,)+ &
Innovation: Yo ™ h(Tb)

2 2
3D-Var: T, minimizes the distance to both 2y = La=1)" (1) =7.)
the background and the observations O, o

3D-Var . LN )
Solutlon T — Tb + W(yo - h(Tb ))W|th W3D—Var — (sz + H602H) H602 = GZHGOQ

a

This variational solution is the same as the one obtained before with Kalman
filter (a sequential approach, like Optimal Interpolation, Lorenc 86)):

KF/Ol Ta — Tb + w(yo — h(Tb)) with Wo; = GZH(Goz + GZHz)—l
solution

Show that the 3d-Var and the OI/KF weights are the same:
both methods find the same optimal solution!



00 UTC 06 UTC 12 UTC

"~ Forecast | — | _Forecast |— [ _Forecast |

Typical 6-hour analysis cycle.

Forecast phase, followed by Analysis phase



Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from ¢, to t,: T,(t,,,)=m|T, )]

Forecast error: g, (tm) =T, (tm) — Tt(ti+1) —
m[Ta (tl)] o m[]—;(tl)] T gm (ti+1) — Mga (tl) + Sm (ti+1)

So that we can predict the forecast error variance

GZ (t;01) = Mzaczl (t)+0; O = 8;31 (¢:11)

(The forecast error variance comes from the analysis and model errors)



Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from t; to ¢, ,: T, (1) =m|T, ()]

Forecast error: g, (tm) =T, (tm) — Tt(ti+1) —
m[Ta (tl)] o m[]—;(tl)] T gm (ti+1) — Mga (tl) + Sm (ti+1)

So that we can predict the forecast error variance

Gi (t;01) = Mzaczl (t)+0; O = 8;31 (¢:11)

(The forecast error variance comes from the analysis and model errors)

Now we can compute the optimal weight (KF or Var, whichever form is
more convenient, since they are equivalent):

w=o0,H(c.+Ho,H)"' =(0;” + HGfH)_1 Ho’



Toy temperature analysis cycle (Kalman Filter)

Analysis phase: we use the new observation Y, ()

compute the new observational increment v, (t.)— h(Tb (tm))

and the new analysis:

Ta (ti+1) — Tb (ti+1) + Wi+1 I:y() (ti+1) o h(Tb (ti+1)):|

We also need the compute the new analysis error variance:

from o’°=0,+Ho’H
)
O O
2 _ o b . 2 2
weget O,(f, )= > ) =(l-w_ H)0,, <0,
o +H 0O, "

now we can advance to the nextcycle Ziios%; 35-



Summary of toy Analysis Cycle (for a scalar)

T,(t.)=m|T,t)]  o}(t,)=M[c2)] M =0m/oT
Interpretation...

“We use the model to forecast 7, and to
update the forecast error variance from ¢, to ¢, ”



Summary of toy Analysis Cycle (for a scalar)

T, =m|T,a)] o, ,)=M[clt)] M =0m /0T

“We use the model to forecast 7, and to
update the forecast error variance from ¢, to ¢, "

i+1

At Lian T,=T, +W|:yo - h(Tb)]

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal weight:



Summary of toy Analysis Cycle (for a scalar)

T, =m|T,a)] o, ,)=M[clt)] M =0m /0T

“We use the model to forecast 7, and to
update the forecast error variance from ¢, to ¢,

i+1

At Lian T,=T, +W|:yo - h(Tb):I

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal weight:

w=0,H(o.+Ho,H)"

“The optimal weight is the background error variance divided
by the sum of the observation and the background error
variance. H = oh / dT ensures that the magnitudes and units
are correct.”



Summary of toy Analysis Cycle (for a scalar)

w=0,H(o,+Ho,H)"

“The optimal weight is the background error variance divided
by the sum of the observation and the background error
variance. H = 0h /dT ensures that the magnitudes and units
are correct.”

Note that the larger the background error variance, the
larger the correction to the first guess.



Summary of toy Analysis Cycle (for a scalar)

The analysis error variance is given by

2 22
2 ( Go Gb

O =
o.+H’0;

a

]: (1-wH)o;

“The analysis error variance is reduced from the background
error by a factor (1 - scaled optimal weight)”



Summary of toy system equations (cont.)

The analysis error variance is given by

2 22
2 ( Go Gb

O =
o.+H’0;

a

]: (1-wH)o;

“The analysis error variance is reduced from the background
error by a factor (1 - scaled optimal weight)”

This can also be written as

0= (Gb_z + G;2H2)

a

“The analysis precision is given by the sum of the background
and observation precisions”



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-109



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-108

We have to replace scalars (obs, forecasts) by vectors
Tbﬁxb; Taﬁxa; y()%yo;
and their error variances by error covariances:

o,—>B; o.—>A; o —>R;



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-108

We have to replace scalars (obs, forecasts) by vectors
Tbﬁxb; Taﬁxa; y()%yo;
and their error variances by error covariances:

o,—>B; o.—>A; o —>R;



Interpretation of the NWP system of equations

“We use the model to forecast from ¢, to ¢,
X, ()= M|[x,(1,)]

At ti+1 Xa:Xb_I_K yo_H(Xb):I




Interpretation of the NWP system of equations

“We use the model to forecast from ¢, to ¢,
X, ()= M|[x,(1,)]

At lin X =X, +K_y0 — H(Xb):l

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”

K=BH (R+HBH")"



Interpretation of the NWP system of equations

“We use the model to forecast from ¢, to ¢,
X, ()= M|[x,(1,)]

At lin X =X, +K_y0 — H(Xb):l

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”

K=BH (R+HBH")"

“The optimal weight is the background error covariance divided by
the sum of the observation and the background error covariance.
H = 0H / dx ensures that the magnitudes and units are correct.
The larger the background error variance, the larger the
correction to the first guess.”



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from t. tot,, ”

i+1
X,(t,,)=M [Xa (ti)]



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from t. tot,, ”

i+1
x,(t,,,)=M|[x,(t)]

“We use the linear tangent model and its adjoint to
forecast B”

B(z,,,)=M|A()|M’



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from t. tot,, ”

i+1
x,(t,,,)=M|[x,(t)]

“We use the linear tangent model and its adjoint to
forecast B”

B(t,,)=M|A@)|M’

“However, this step is so horrendously expensive that it
makes Kalman Filter completely unfeasible”.

“‘Ensemble Kalman Filter solves this problem by estimating
B using an ensemble of forecasts.”



Summary of NWP equations (cont.)

The analysis error covariance is given by
A=(I-KH)B

“The analysis covariance is reduced from the background
covariance by a factor (I - scaled optimal gain)”



Summary of NWP equations (cont.)

The analysis error covariance is given by
A=(I-KH)B

“The analysis covariance is reduced from the background
covariance by a factor (I - scaled optimal gain)”

This can also be written as
A"'=B"'+H'R'H

“The analysis precision is given by the sum of the background
and observation precisions”



Summary of NWP equations (cont.)

The analysis error covariance is given by
A=(I-KH)B

“The analysis covariance is reduced from the background
covariance by a factor (I - scaled optimal gain)”

This can also be written as
A"'=B"'+H'R'H

“The analysis precision is given by the sum of the background
and observation precisions”

K=BH (R+HBH")' =B '+H'R'H)'H'R"

“The variational approach and the sequential approach are
solving the same problem, with the same K, but only KF (or
EnKF) provide an estimate of the analysis error covariance”



Ensemble Transform Kalman Filter
(EnKF)

Forecast step'

n k =M ( n—1 k)
1 bT b <b
B = ﬁX X", where X’ [an n,K—XJ
Analysis step:

x*=x'+K (y —Hx);K =B H'(R+HB H")"

The new analysis error covariance in the ensemble space 1s (Hunt et al.
2007)

~

A, =[(K-DI+@HX:) R HX)]

And the new ensemble perturbations are given by (transform)

~

X:=X'[(K-1)A,]"



Comparison of 4-D Var and LETKF at JMA

18th typhoon in 2004, IC 12Z 8 August 2004
T. Miyoshi and Y. Sato
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Comparison of 4-D Var and LETKF at JMA

RMS error statistics for all typhoons in August 2004
T. Miyoshi and Y. Sato
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Buehner et al., 2008: Forecast Results — 120h NH
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Buehner et al., 2008: Forecast Results — 120h SH
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Whitaker: Comparison of T190, 64 members EnKF with
T382 operational GSI, same observations
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Vertical profiles of the RMS difference between six hour forecasts and in-situ observations for the period 2007120700 —
2008010718. Observations are aggregated in 100 hPa layers. The red curve is for the ensemble mean of the experimental 64-
member T190 EnKF system, and the blue curve is for the T382 GSl-based GDAS system operational in December 2007.



Summary

Data assimilation methods have contributed much to the
improvements in NWP.

A toy example is easy to understand, and the equations
are the same for a realistic system

Kalman Filter (too costly) and 4D-Var (complicated) solve
the same problem if the model is linear and we use long
assimilation windows

Ensemble Kalman Filter is feasible and simple, and is
starting to catch up with operational 4D-Var (hybrid).

Important problems: estimate and correct model errors &
obs. errors, optimal obs. types and locations, tuning
additive/multiplicative inflation, parameters estimation,...

It seems like EnKF data assimilation could be used for
parameter estimation and hence for model correction.

I'll show new applications for EnKF in the 2nd talk



