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Outline 

• Basic principle of remote sensing over land 
 

• Microwave retrieval of land emissivity 
 

• Physical Base for MW Remote Sensing of Clouds 
 

• Cloud Liquid Water Algorithm 
 

• Cloud Ice Water Algorithm  
 

• Microwave Sounding Algorithm 
 
 
 



Principle of Microwave Land Remote Sensing 

exp( ) (1 ) exp( )b s s u d sT T T Tε τ µ ε τ µ= − / + + − − /

Emission-based radiative transfer equation: 

2[1 (1 ) ] (1 )[1 (1 ) ]b sT T Tε ε= − − ϒ −∆ − ϒ + − ϒ

If atmosphere is transparent like a glass window, then  1ϒ =

 Tb = εTs

Brightness temperature is a linear function of surface emissivity! 

This is a basic principle for microwave remote sensing of  land surface property. 



Microwave Transmissivity Spectrum 



BT Sensitivity to Surface Emissivity 
 

  

∆TB = τ (Ts − Td )∆ε,      ∆ε = 0.04
Surface emissivity uncertainty of 5-10% will produce 

brightness temperature uncertainty up  to several degrees! 



Atmospheric Transmittance   

A typical channel for atmospheric profiling can become surface 
sensitive in certain conditions (e.g. dry moisture, high elevation).  

183 1 GHz± 183 3 GHz±

183 7 GHz± 52.8 GHz

( )ϒ



Satellite Microwave Window Channels  

• SSM/I 19.35, 37, 85.5 GHz 

• AMSU 31.4, 50.3, 89, 150 GHz 

• TMI 10.7, 19.35, 37, 85.5 GHz 

• AMSR-E 6.6, 10.7, 19.35, 37, 85.5 GHz 

• SSMIS 19.35, 37, 50.3, 90, 150 GHz 

• Windsat 6.6, 10.7, 19.35, 37 GHz 



Retrieval of Microwave Land Emissivity 

  
ε =

Tb − Tu − Tdτ
τ (Ts − Td )

  
Td = τ0

τ s∫ B(τ,T )exp(−
(τ − τ 0 )

µ
)dτ,

  
Tu = τ s

τ0∫ B(τ,T )exp(−
(τ s − τ )

µ
)dτ

Td

downwelling BT 
Tu

upwelling BT 

εTs
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Required Data Sets 

• Satellite microwave brightness temperatures  
    (F-14 SSM/I) 
• Atmospheric temperature and moisture profiles  
    (GDAS, AMSU-A/B) 
• Land surface temperature  
    (GDAS, AVHRR) 
• Precipitation screening   
     (AVHRR, Scattering Index)  



Multi-Sensor and NWP Data Sets  
SSM/I Antenna Temperature at 19:36 GHz 

Julian day: 99074  
 

Julian day: 99074  
 

Julian day: 99074  
 

Julian day: 99074  
 

GDAS Land Surface Temperature at 2-m Height 

AVHRR Infrared 11  µm

GDAS Atmospheric Total Precipitable Water 



SSM/I Land Surface Emissivity (v-pol) at 19.35 GHz 
March 1999 



SSM/I Land Surface Emissivity (v-pol) at 37.00 GHz 
March 1999 



SSM/I Land Surface Emissivity (v-pol) at 85.50 GHz 
March 1999 



Polarization Difference (19 GHz)  

 



Polarization Difference (37 GHz) 

 



Land Surface Emissivity at 85 GHz Derived from 
SSM/I    

March 1999 April 1999 

May 1999 June 1999 



DMSP SSM/I Emissivity Climatology (1992-
2006) at 37.0 GHz H-Pol 



Global Land Emissivity Characterization  
SSM/I Fifteen Year Time Series    

SSM/I surface emissivity climatological data set is developed at 
various time scales (e.g. pentad, weekly and monthly, anomaly). 
SSM/I sensors from F10 to 15 satellites are intercalibrated to a 
reference satellite (F13). 

• Large seasonal change at higher frequencies 
• Large polarization difference for several surfaces  
  such as desert, snow, flooding 
• Deserts appear as a scattering medium 

Findings: 



North Africa Emissivity Spectra  (January 1, 2009)
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Mean Emissivity Spectra over North Africa 
V-POL  



Mean Emissivity Spectra over North Africa 
H-POL  

North Africa Emissivity Spectra  (January 1, 2009)
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Microwave 
Emissivity Spectra 

over Various 
Surface Conditions 

Surface emissivity spectra at a viewing angle of 53 degree 

Surface emissivity spectra at a viewing angle of 53 degree 

V-Pol 

H-Pol 



Microwave Emissivity Spectra over Various 
Surface Conditions (cont.) 

• Open water – two-scale  roughness  theory 
• Canopy –Geometric optical scattering   
• Bare soil – Coherent reflection and surface roughness  
• Snow/desert – Dense medium scattering  

Model-simulated microwave emissivity spectra is qualitatively 
consistent with satellite and ground-based retrievals. Deserts is 
treated as scattering in order to produce observed characteristics 
from satellite. 

By considering 

We obtained the following conclusions: 



Land Emissivity Summary 

• highly variable over deserts and large polarization  
  difference  
• highly variable for snow conditions  
• high values over  vegetated land (> 0.9) 

 The uncertainty on retrieved land emissivity is larger at  
    channels near water vapor and oxygen absorption lines 

 Land emissivity is 
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Significance of Microwave Remote Sensing of 
Atmosphere   

• Validation of clouds predicted from forecast models   
 

• Useful for climate and radiation feedback studies   
 

• Complementary to the technology from visible wavelength  
 

• Temperature and water vapor profiles under all weather  
        conditions 
 

 



Principle of MW Remote Sensing of Clouds  

exp( ) (1 ) exp( )b s s u d sT T T Tε τ µ ε τ µ= − / + + − − /

Emission-Based Radiative Transfer Equation: 

2[1 (1 ) ] (1 )[1 (1 ) ]b sT T Tε ε= − − ϒ −∆ − ϒ + − ϒ

If  atmosphere is isothermal,   0T∆ =

Tb is a quadratic function of atmospheric transmittance which is 
determined by cloud liquid and water vapor absorption.  

  Tb = Ts[1− (1− ε)ϒ2 ]

This is a basic principle for microwave remote sensing of cloud  properties!  
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Microwave Remote Sensing of Liquid Phase Clouds 

• A large contrast exists between 
cloudy and “clear” conditions, 
thanks to low ocean emissivity. 
 

• Brightness temperature increases 
exponentially with liquid water, 
thus requiring a logarithmic 
function for linearization 
 

• “The linear regime” is dependent 
on frequency. We can meet the 
need of more customer (e.g. rain 
water...) if the measurements at 
each frequency are optimally  
utilized in the retrievals     
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Emission-Based RTM 

  Tb = Ts[1− (1− ε)ϒ2 ]

  ϒ = exp[−(τO + τV + τ L ) / µ)]

 
τ L =κ L L =

∆Z∫ κ Ray LWCdz

  
κ Ray =

6π
λρw

Im m2 −1
m2 + 2













  
τV =κVV =

0

∞

∫ κ H2OρV dz
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Emission-Based RTM (cont.) 

exp[ ( ) )O V LV Lτ κ κ µϒ = − + + /

2
2

ln( ) ln[ (1 )]
2

O
V L s b sV L T T T

τµκ κ ε
µ

 
+ = − − − − + 

 

  L = a0µ[ln(Ts − Tb,1) − a1 ln(Ts − Tb,2 ) − a2 ]

  V = b0µ[ln(Ts − Tb,1) − b1 ln(Ts − Tb,2 ) − b2 ]



29 

Cloud Absorption in Relation to Temperature 
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AMSU on Board NOAA POES Since 1998 



31 

AMSU on Board NOAA POES  
Since 1998 (cont.) 

   There are 20 channels divided into three sub-modules: 
 
AMSU-A1 – 13 channels located near the 60 GHZ oxygen  
absorption band  
AMSU-A2 – two window channels at 23.8 and 31.4 GHz 
AMSU-B – two high frequency channels at 89 and 150 GHz,  
                    and three channels near 183 GHz water vapor  
                    absorption line 
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AMSU on Board NOAA POES Since 1998 (cont.) 

The field-of-view size varies as the instruments scan crossing track.   
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AMSU-A Weighting Functions AMSU-A1 Clear Sky 

AMSU-A2 

Clear Sky 
Water cloud 
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AMSU-B Weighting Functions 

Clear Sky 
Water cloud 
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NOAA-16 AMSU-A Radiance Asymmetry 
(Channels 1, 2, 3, 15) 

,  
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NOAA-16 AMSU-A Radiance Asymmetry  
(Channel 1,2,3,15) 

,  

∆T = A0 exp{ -0.5[(θ - A1) /A2]2 } + A3  + A4 θ + A5 θ2 
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AMSU Cloud Liquid Water 

     Before Asymmetry Correction                     After Asymmetry Correction       

NOAA-16 

NOAA-15 
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Microwave Remote Sensing of Ice Phase Clouds 
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I(τ ,µ) =
(I0 − B)[γ 1e

−κ (τ −τ1 ) − γ 2e
κ (τ −τ1 ) ]− (I1 − B)[β−1eκ (τ −τ0 ) − βe−κ (τ −τ0 ) ]

γ 4e−κ (τ1 −τ0 ) − γ 3e
κ (τ1 −τ0 ) + B

B(T) 

I0 

I1  

Cloud Ice Water Path Algorithm  

τ 0

τ1
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Asymptotic Limits:  

])()[)](()([])([),( /// µτ−µτ−µτ2−
1

111 ε−1+1−1−−ε−1−1=µτ eeTBTBeBI s

2. Scattering Approach: 

1.  Emission Approach 

)(
),(),(
µ+1
µτ

=µτ 1
0 Ω

II

Cloud Ice Water Path Algorithm  

),()( mx
D

IWP
eN

ei

Ω
µρ

µΩ =

References: Weng and Grody (2000, JAS), Zhao and Weng (2002, JAM) 
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ER-2 MIR, DC-8 
ARMAR, MODIS 

Simulator 
Measurements   

Weng and Grody (2000, JAS) 

Three millimeter 
wavelength channels 
provide the overall 
needed sensitivity 
for cloud ice 
microphysics which 
can be uniquely used 
for precipitation 
mapping. 
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Same figures as those on the previous slide, but colored. 
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ER-2 MIR, DC-8 ARMAR, MODIS 
Simulator Measurements (cont.)   
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Advanced Microwave Precipitation Radiometer (AMPR) 

    Moderate-resolution Imaging Spectrometer (MODIS) 



Definitions of Cloud Ice Water Path 

  
τ =

zb

zt∫ dz
0

∞

∫
π
4

D2Ωe(x,m)N (D)dD

  
IWP =

zb

zt∫ dz
0

∞

∫
π
6

D3N (D)dD

  
Ω(µ) =

IWP
µρi De

ΩN (x,m)

  ΩN = exp(b0 + b1 ln(De ) + b2 (ln De )2



Cloud Ice Water Path  
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N18 IWP Monthly Average 2005-2008 

kg/m2 
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N18 IWP Monthly Average 2005-2008 

• Brightness temperatures from AMSU-B 89 and 150 GHz 
are two  primary channels for IWP and De 

• Retrieval algorithm was published in Journal of Atmos Sci 
(Weng and Gody, 2000) and J. Appli. Meteor (Zhao and 
Weng, 2002) 

• AMSU-A window channels are used for surface screening   
• The algorithm works for opaque ice clouds having IWP 

greater than 0.05 kg/m2 



Atmospheric Sounding from MW 

1
( )

s
bT B T d

ϒ
= ϒ∫

( )exp( )sd dτ τ τ µ
µ
−

ϒ = − /

  
W =

∂ϒ
∂ ln p

Atmospheric weighting function is defined as  

Weighting function: 

0
( ) ln

s
b i iP

T B T W d p, = ∫

1

L

b i i j i j
j

T c T W, ,
=

= ,∑



Temperature Retrieval from  
Linear Regression  Algorithm  

0
1

( ) ( ) ( ) ( )
L

j b j
j

T p C p C p Tµ µ µ,
=

= , + , ,∑

Tb is brightness temperature 
 
μ is the cosine of local zenith angle 
 
p: pressure  
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1D-VAR Retrieval 

• In cloudy and precipitation conditions,  the radiance 
become  a non-linear function of temperature  

 
• Also, we have more variables than channel 

measurements (an under-deterministic problem) 
 
• A prior or background information can help to formulate 

an optical estimation   
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1D-VAR Retrieval  Algorithm 
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∂
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MW 1D-VAR System for Atmospheric Sounding   
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Hurricane temperature Structure from 
Two RT models 



Validation of TPW Retrieval Using Radiosondes  
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Summary of MW Remote Sensing of Atmosphere  

1. Microwave Absorption Bands  
– O2 (50-60 GHz, 117-120 GHz),  
– H2O (176-190 GHz)  
– Used for sounding of temperature & humidity 

2. Microwave Cloud Algorithms 
– Emission: cloud liquid water/total precipitable water 
– Scattering:  ice water path/ particle size 

3. Microwave Sounding Algorithms: 
–  simultaneous retrievals from 1dvar 
– All weather profiling requires scattering rt model 
– Accurate surface emissivity model  

4. Main Applications:  
– NWP data assimilations 
– Hurricane monitoring 
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