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Microwave Absorption Spectrum 
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Janssen M. A., 1993:  Atmospheric remote sensing by microwave 
radiometry,  Chapter 2, John Wiley &Son inc 

1. Rotational transition line: O3,H2O,CO,ClO, N2O…
2. Spin-rotational transition: O2  and zeeman splitting in

upper atmosphere  where geomagnetic field is important
3. Doppler and pressure broading 



Microwave Penetration DepthMicrowave Penetration Depth
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Instrument Spectrum AllocationsInstrument Spectrum Allocations
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MW Stratosphere and Mesosphere 
SoundingSounding
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Millimeter Wavelength Spectroscopy g p py
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Global Land Emissivity Characterization 
SSM/I Fift Y Ti S iSSM/I Fifteen Year Time Series   

• Large season change at 
higher frequencies

• Large polarization g p
difference for several 
surfaces (e.g. desert, snow, 
flooding)ood g)

• Deserts appear as a 
scattering medium

l k f ll h l k f h h l d l

19V 37H19H 37V 85V 85H

Click following hyperlinks for other channel emissivity pentad looping images 
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SSM/I surface emissivity climatological data set is developed at various time scales 
(e.g. pentad, weekly and monthly, anomaly). SSM/I sensors from F10 to 15 
satellites are intercalibrated to a reference satellite (F13)



Microwave Surface Emissivity Spectra

Surface Emissivity Spectra at a Viewing Angle  of 53 Degree
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Advanced Microwave Sounding Unit
Imaging and Temperature Sounding ChannelsImaging and Temperature Sounding Channels

23.8 GHz 31.4 GHz

52.8 GHz 53.7 GHz
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Advanced Microwave Sounding Unit
Imaging and Moisture Sounding ChannelsImaging and Moisture Sounding Channels

89 GHz 183±3 GHz

150 GHz 183± 1 GHz
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Microwave Remote Sensing of Cloudsg

• A large contrast exists between g
cloudy and “clear” conditions, 
thanks to low ocean emissivity.

• Brightness temp increases 
exponentially with liquid water, 
thus requiring a logarithmic 
function for linearizationfunction for linearization

• “The linear regime” is dependent 
on frequency We can meet moreon frequency.  We can meet more 
customer’s needs (e.g. rain 
water..) if the measurements at 
each frequency are optimally  

tili d i th t i l
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utilized in the retrievals    



Emission Approach pp
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Emission-Based RT Model (1/3)Emission-Based RT Model (1/3)
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Emission-Based RT Model (2/3)
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Emission-Based RT Model (3/3)Emission Based RT Model (3/3)

17



Why MW can’t  “see” cloud well over 
land?
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Liquid Water AbsorptionLiquid Water Absorption 
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Scattering Approach: 2 Streams 
A i tiApproximation 
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Two-Stream Model Solution
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Algorithms of Cloud (Rain) Liquid 
Water Path: Vertically IntegratedWater Path: Vertically Integrated 

Liquid Water over Unit Area
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Cloud Liquid Water Algorithm q g

Sometime, satellite measurements under
clear condition can be used to derive some

ffi i t F E 6 13 t L 0
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coefficients. From Eq. 6.13, set L=0



Cloud Liquid Water Algorithm EvolutionCloud Liquid Water Algorithm Evolution 
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y g
Retrieval system, 1dvarwith scattering RT, 
all hydrometeors profiles 
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SSM/I Cloud Liquid Water Algorithm: 
Operational at FNMOC and NESDIS

Pros:  
•Semi-Physical with easy understanding

Cons:  
•Difficult to accommodate information from•Semi-Physical with easy understanding

•Large dynamic range (rain and non-rain)
•Clean background due to uses of real 
measurements
•Validated with ASTEX data for non-raining clouds

•Difficult to accommodate information from 
new channels and ancillary data
•Cloud layer temp is  implicit 

•Validated with ASTEX data for non-raining clouds
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NOAA POES AMSUNOAA POES AMSU

• AMSU are  on board NOAA POES since 1998
• There are 20 channels divided into three sub-modules:

A1 – 13 channels located near the 60 GHZ oxygen absorption band 
A2 – 2 window channels at 23.8 and 31.4 GHz
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B – 2 high frequency channels at 89 and 150 GHz, and 3 channels near 183 GHz 
water vapor absorption line

• The field-of-view size varies as the instruments scan crossing track  



AMSU Weighting Functions
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NOAA-16 AMSU-A Radiance Asymmetry 
(Channel 1,2,3,15)

,

29

∆T = A0 exp{ -0.5[(θ - A1) /A2]2 } + A3  + A4 θ + A5 θ2



NOAA-15 AMSU-A Radiance Asymmetry 
(Ch l 1 2 3 15)(Channel 1,2,3,15)

,
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∆T = A0 exp{ -0.5[(θ - A1) /A2]2 } + A3  + A4 θ + A5 θ2



Cloud Absorption in relation to TemperatureCloud Absorption in relation to Temperature
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AMSU Cloud Liquid WaterAMSU Cloud Liquid Water

Before Asymmetry Correction After Asymmetry CorrectionNOAA-15

NOAA-16
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Al ith f Cl d I W t P thAlgorithms of Cloud Ice Water Path: 
Vertically Integrated Ice Water over 

Unit Area
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Cloud Ice Water Path Algorithm
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2 Scattering Approach:

1. Emission Approach
Zhao and Weng (2002, JAM)
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2. Scattering Approach:
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Definitions of Cloud Ice Water PathDefinitions of Cloud Ice Water Path
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CIWP Error Budget
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ER-2 MIR, DC-8 ARMAR, MODIS 
Simulator MeasurementsSimulator Measurements  

Th illi l h h l id h l

37Weng and Grody (2000, JAS)

Three millimeter wavelength channels provide the overal
needed sensitivity for cloud ice microphysics which can 
be uniquely used for precipitation mapping



MIR Window & Sounding 
Ch l Ob tiChannel Observations
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Flowchart of Cloud Ice Algorithmg
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Cloud Ice Water PathCloud Ice Water Path 

• Brightness temperatures from AMSU-B 89 and 150 GHz are two  primary channels for IWP and De

• Retrieval algorithm was published in Journal of Atmos Sci (Weng and Gody, 2000) and J. Appli. Meteor 
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(Zhao and Weng, 2002)

• AMSU-A window channels are used for surface screening.  
• The algorithm works for opaque ice clouds having IWP greater than 0.05 kg/m2



Algorithms of Atmospheric Sounding 
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MIRS System Design & Architecturey g

Raw Measurements
Level 1B Tbs

External Data
& Tools

Radiance 
Processing 

Radiometric Bias
Ready To Invert

Inversion Process

Ready-To-Invert
Radiances

RTM Uncert. Matrx
F

NEDT Matrx
E

EDRs

F

NWP Ext. Data
Geophysical Bias
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EDRs

Comparison In-Situ Data



Cost Function Minimization

• To find the optimal solution, 
solve for: ( ) ( ) ( ) ( )⎤⎡⎤⎡ 11 1T1Tsolve for:
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Microwave TPW Extended over Land

snow-covered surfaces 
need better handlingneed better handling

GDAS AnalysisGDAS Analysis

44MIRS Retrieval

Retrieval over sea-ice and 
most land areas 

capturing same features as GDAS



Validation of TPW Retrieval over 
Land

Bi 1 13

MIRS-based TPW Performances over Land

Bias: -1.13 mm

Std Dev: 4.09 mm

Corr. Factor: 0.86

#Points: 4293

• ~4000 NCDC IGRA points 
collocated with NOAA-18 

diradiances
• Only convergent points over 

land used
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• Only points within 0.5 degrees 
and within 1hour

• Cloudy points included up to



Global Temperature Profiling  

No Scan-Dependence in retrieval
Smooth Transition Land/Ocean

QC-failure is based on convergence: 
Focus of on-going work

46Similar Features Captured



Global Humidity Profiling 

No Scan-dependence noticed:
Angle dependence properly 

accounted for
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Microwave Environmental Data Records

SDR/EDR POES/METOP
AMSU-A/B; MHS

DMSP
SSMIS

NPOESS
ATMS/MIS

Radiances 

Temp. profile

Moist. profilep

Total precipitable water*

Hydr. profile

Precip rate*Precip rate

Snow cover*

Snow water equivalent*

Sea ice *Sea ice 

Cloud water*

Ice water*

Land temp*
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Land temp*

Land emis*

Soil moisture/Wetness Index



Intercomparison between MODIS and AMSR-E 
LWP f St t Cl dLWP for Stratus Clouds
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Validation of General Circulation ModelValidation of General Circulation Model
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Validation of Numerical Weather 
Prediction ModelsPrediction Models 
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GFS Prognostic Scheme vs. AMSU 
Cloud WaterCloud Water 

Satellite 
Retrievals 

GFS model (non-
raining) 

Eta model 
(raining&non-
raining) 

Eta model (non-
raining) 
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It is obvious that global/regional models have “ice happy” physics



Impacts of SSMIS LAS on Hurricane 
Temperature Analysis p y

Control Test  

55Liu and Weng, GRL, 2007



Katrina Warm Core Evolution
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Cloud Ice and Precipitation Distribution 
Hurricane Dean (2007) ( )

SSMIS Rain Rate Retrieval Algorithm Summary:SSMIS Rain  Rate Retrieval Algorithm Summary:

1. Derive IWP and De from SSMIS 91 an 150 GHz using two-stream model (Weng 
and Grody, 2000)
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y )
2. IWP is then converted to surface rain rate (Weng et al., 2002) 
3. SSMIS derived surface snow and sea ice is used to screen the false signature  



Typhoon Luoshayp
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2008 IOWA Flooding2008 IOWA Flooding 
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SummarySummary  

1. Sounding and Imaging:1. Sounding and Imaging: 
– Profiling atmosphere and imaging clouds, precip and surface

2. Microwave Absorption Bands: 
– O2 (50-60 Ghz, 117-120 GHz), 
– H2O (176-190 GHz)H2O (176-190 GHz) 
– Channels near the line centers for sounding  
– Channels between the lines for imaging 

3. Microwave Cloud Algorithms: 
Emission: cloud liquid water/total precipitable water– Emission: cloud liquid water/total precipitable water

– Scattering:  ice water path/ particle size
4. Microwave Sounding Algorithms:

– simultaneous retrievals from 1dvar
All eather profiling req ires scattering rt model– All weather profiling requires scattering rt model

– Accurate surface emissivity model 
5. Main Applications: 

– NWP data assimilations
H i it i

60

– Hurricane monitoring
– Surface flooding 


